Locator Attachments as an Alternative to Ball Attachments in 2-Implant Retained Mandibular Overdentures

Onur Geckili, Med Dent; Hakan Bilhan, Dr Med Dent; Tayfun Bilgin, Dr Med Dent

The classical treatment plan for the edentulous patient involves creation of maxillary and mandibular complete dentures. However, people who wear conventional dentures often report discomfort or frank pain, lack of retention and stability, and difficulty eating. These complaints relate mostly to mandibular complete dentures. Osseointegrated implants provide a reasonable solution for problems with these dentures. Implant-retained mandibular overdentures are associated with significantly greater general satisfaction, comfort, stability and ability to chew than conventional mandibular dentures. Two-implant retained mandibular overdentures are a routine therapy modality supported by the McGill consensus.

Previous authors have reported less bone atrophy in edentulous mandibles into which implants have been placed; as such, implants are also important for bone preservation.

Several attachment systems are available for 2-implant retained mandibular overdentures, specifically ball, bar and magnet attachments and rigid or nonrigid telescopic copings. Because of their simplicity of application and low price, ball attachments are preferred. Although there are conflicting reports, ball attachments often have better scores for retention, soft-tissue or mechanical complications, and patient satisfaction than bar and magnet attachments.

When the interarch distance or the height of the denture is inadequate for placing ball attachments, several problems may occur, such as overcontoured prosthesis, excessive occlusal vertical dimension, fractured teeth adjacent to the attachments, separation of attachments from the denture, fracture of the prosthesis, and overall patient dissatisfaction.

In these situations, locator attachments (Astra Tech, Mölndal, Sweden) or micro-head extracoronal resilient attachments (ERA; Sterngold ImplaMed, Attleboro, Mass.) can be a suitable alternative to ball attachments because of their low profile.

This article presents the chairside processing technique (direct method) for a low-profile attachment system (Astra Tech locator housing and male attachments) as an alternative to ball attachments. This locator system contains locator abutments suitable for all Astra Tech fixture diameters, a locator process kit, a spacer, a processing cap and 4 retention inserts in different colours (representing different...
retention forces) and a locator core tool, which consists of 3 parts (Fig. 1): a curved insert removal component for catching and pulling the nylon insert out of the permanent metal housing (upper part of tool); an insert seating component for seating a replacement insert into the metal housing (middle part of tool); and the locator abutment driver, for positioning and tightening the abutment (lower part of tool).

Step-by-Step Procedure

1. Remove the healing abutments with the hexagonal screwdriver.
2. Measure the gingival height with the depth gauge, and choose the appropriate locator abutment (Fig. 2).
3. Position the locator abutment, hand-tighten the abutment with the locator abutment driver, and then tighten with the torque wrench (Figs. 3a and 3b).
4. Place a white spacer ring over the head of each abutment to block the area under the housing from acrylic flow.
5. Place the housing over the abutments (Fig. 4).
6. Remove approximately 4 mm of acrylic from the corresponding parts of the denture with a

Figure 2: Depth gauge for measuring the gingival height.

Figure 3a: Locator abutment driver for positioning and hand-tightening the locator abutment.

Figure 3b: Torque wrench for final tightening.

Figure 4: White spacer rings and housings positioned over the locator abutments.

Figure 5a: Scraped parts can be seen after the elastomeric impression has set.

Figure 5b: Scraped parts are painted with an indelible pencil.

Figure 6: Black processing male attachments are removed with the curved insert removal tool.

Figure 7a: A pink replacement insert is seated into the metal housing.

Figure 7b: Final view of the overdenture.
Fig. 6

Fig. 5a

Fig. 5b

The authors have no declared financial interests.

References

