Minimal Intervention Dentistry: Part 2. Strategies for Addressing Restorative Challenges in Older Patients

Jane M. Chalmers, BDSc, MS, PhD, DABSCD

ABSTRACT

Minimal intervention dentistry (MID), a modern, evidence-based approach to caries management in dentate patients, uses a medical model whereby disease is controlled by the “oral physician” and an affiliated dental team. Geriatric MID helps clinicians to address the ever-increasing restorative challenges presented by older patients, including erosion, abrasion, demineralization, rampant coronal and root caries, retained roots, recurrent caries (necessitating crowns and other repairs), subgingival caries, “wet” oral environments, salivary dysfunction, disruptive behaviours, poor compliance with preventive care, high plaque levels, and financial and other restrictions on care options. The main components of a geriatric approach to MID are assessment of the risk of disease, with a focus on early detection and prevention; external and internal remineralization; use of a range of restorations, dental materials, and equipment; and surgical intervention only when required and only after disease has been controlled. This second in a series of 2 articles describes direct restorative strategies to address the challenges of geriatric caries management, including choice of material, placement of glass ionomers, sandwich technique, techniques for the management of erosion and abrasion, tunnel and slot preparations, techniques for “wet” subgingival environments, vital pulp therapy and geriatric atraumatic restorative technique.

MeSH Key Words: dental bonding; dental caries/prevention & control; dentistry, operative/methods; glass ionomer cements/therapeutic use

The “extension for prevention” surgical approach to oral disease management, with G.V. Black cavity designs specified for each lesion type, has been the cornerstone of 20th century dentistry. Of great importance has been the design of the cavity preparation to include a self-cleansing outline form, resistance form, retention form, convenience form, removal of caries, and finish of the enamel walls, margins, and toilet of the cavity. The resulting “lifetime cycle of restoration” involved a substantial loss of tooth structure, weakening of cusps and undermining of crowns. In particular, use of the mesio-occlusodistal amalgam has resulted in a large number of cusp fractures. Unfortunately, this traditional restorative approach does not help to address the ever-increasing number of complex restorative challenges in older patients, which include erosion, abrasion, demineralization, rampant coronal and root caries, sound and decayed retained roots, recurrent caries (necessitating crowns and other repairs), subgingival caries, “wet” oral environments,
deep carious lesion in a contact area might need internal remineralization with a glass ionomer and composite sandwich (lamination) restorative technique. This article focuses on the use of direct restorative materials in older patients and on several aspects of MID that can be routinely used in geriatric dentistry: choice of material, placement of glass ionomers, sandwich technique, techniques for the management of erosion and abrasion, tunnel and slot preparations, techniques for dealing with “wet” subgingival environments, vital pulp therapy and geriatric atraumatic restorative technique.

Choice of Material

In geriatric MID, the choice of the direct restorative material to be used cannot be made until caries removal is complete and field control has been evaluated. Conventional hand instruments, rotary handpieces and, if available, air abrasion or lasers are used for removing caries.10–12 Other factors affecting choice of restorative

<table>
<thead>
<tr>
<th>Site</th>
<th>Size</th>
<th>Treatment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (pit and fissure)</td>
<td>0 (no cavity)</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>1 (minimal)</td>
<td>1.1</td>
</tr>
<tr>
<td>1</td>
<td>2 (moderate)</td>
<td>1.2</td>
</tr>
<tr>
<td>1</td>
<td>3 (enlarged)</td>
<td>1.3</td>
</tr>
<tr>
<td>1</td>
<td>4 (extensive)</td>
<td>1.4</td>
</tr>
<tr>
<td>2 (contact area)</td>
<td>0 (no cavity)</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>1 (minimal)</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>2 (moderate)</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>3 (enlarged)</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>4 (extensive)</td>
<td>2.4</td>
</tr>
<tr>
<td>3 (cervical)</td>
<td>0 (no cavity)</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>1 (minimal)</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>2 (moderate)</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>3 (enlarged)</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>4 (extensive)</td>
<td>3.4</td>
</tr>
</tbody>
</table>

GI = glass ionomer, remin = remineralization

Table 1 Caries classification and treatment options for geriatric minimal intervention dentistry (based on Mount and Hume,4 modified by Chalmers)
that are not deep, but where esthetics and strength are important, composite resins may be the material of choice. In a similar situation but where esthetics are of less concern, or where cusp protection is indicated, then amalgam may be the material of choice.11,12 If an erosion or abrasion lesion is being restored, then a conventional or resin-modified glass ionomer may be selected, as is described below.14 In clinical situations where field control is less than optimal (even with the use of gingival retraction techniques), the restorative material of choice will be an amalgam or a conventional glass ionomer,11,12 especially for subgingival areas and areas that are difficult to access, such as molar bifurcations and root areas around crowns. For deep carious lesions, the use of glass ionomer will aid internal remineralization, which is especially important if subgingival visibility is poor.8,15 Where strength is also needed posteriorly, the stronger glass ionomers, with a higher liquid-to-powder ratio, can be used (e.g., Fuji IX, GC America, Alsip, Ill.; Ketac Molar, 3M ESPE, St. Paul, Minn.). Where the highest fluoride release and recharge is needed, Fuji Triage (GC America) will be the material of choice.

Placement of Glass Ionomers

As with composite resins, use of a rubber dam, retractors and/or plastic or metal matrices and strips is recommended to ensure optimal placement of glass ionomers.14,16 Following the basic principles of glass ionomer placement, use cavity conditioner (10% polyacrylic acid) for 10 seconds to remove the smear layer, and do not over-dry or desiccate (a clean cotton pellet, rather than water and air, is optional for removing the conditioner) (Figs. 2 and 3). Note that different companies use different capsule activation systems. After triturating for the required time, squeeze the glass ionomer into the deepest part of the preparation and slowly back-fill, and then place a matrix or hand-carve the material. When hand-carving conventional glass ionomers, do not touch the material for several seconds, then use the minimum number of strokes needed, moving from the centre of the material to each side (for a total of at most 3 to 5 strokes). As a helpful guide to the setting time, place a small amount of glass ionomer from the applicator onto your glove, or try to squeeze the remaining glass ionomer out of the applicator. Both conventional and resin-modified glass ionomers require a seal; either a varnish or a light-activated resin enamel bond can be applied. Conventional glass ionomers need to be sealed as soon as the material is set, to limit immediate water exchange. A small amount of finishing to trim excess can be completed, with another layer of sealant added if required. Final polishing should not be performed for at least 24 hours. Resin-modified glass ionomers can be finished immediately, and a seal

Figure 1: Factors influencing choice of direct restorative material in geriatric minimal intervention dentistry.

Figure 2: Placement of glass ionomers (GI).
is recommended to prevent water uptake over the next 7 days.14,16

Sandwich Technique

As described by Mount14 a lamination or “sandwich” technique with 2 direct restorative materials can be used to “make the most of the biological, physical and/or aesthetic properties of each material, and in the presence of adhesion, to achieve as close as possible to a single monolithic reconstruction of a tooth.” This technique is especially useful in situations when strength and pleasing esthetics are essential. The strongest glass ionomer material (i.e., that which releases the most fluoride) is placed and allowed to fully set and is then covered with the final restorative material (amalgam or composite resin).14 Composite resin bonds micromechanically to set glass ionomers and chemically to hydroxyethylmethacrylate (HEMA) in resin-modified glass ionomers.14 Thus, if a composite resin is being placed over a conventional glass ionomer, then both glass ionomer and enamel are etched with 37\% orthophosphoric acid before placement of the bond and composite resin. If a composite resin is being placed over a resin-modified glass ionomer, then it is not necessary to etch the resin-modified glass ionomer, because of the chemical HEMA bond. However, if the etching material does contact the resin-modified glass ionomer, “it will do it no harm.”14 Contact areas should be built in composite resin but not glass ionomer, and sufficient space should be allowed for an adequate thickness of composite resin.14 With the full sandwich technique, the internal glass ionomer is completely covered by the overlying restorative material, whereas with the partial sandwich technique, the internal glass ionomer is only partly covered.14

Remineralization and Restoration to Counteract Erosion and Abrasion

Erosion is defined as the loss of dental hard tissues by chemical action from intrinsic and extrinsic sources not involving bacteria; abrasion is the loss of tooth substance because of factors other than tooth contact.17 Erosion and abrasion lesions vary in shape and size but are most often located on the buccal tooth surface. It appears that erosion and abrasion contribute in combination to cervical tooth wear.17 Patients with these lesions often complain of hypersensitivity. Cervical tooth wear can occur around any type of dental restorative material. In many cases, caries are not present initially, but many cervical carious lesions develop over time on eroded and abraded root surfaces. In addition to treating the cause of the erosion or abrasion, it is essential to monitor the progression of cervical lesions over time.18 There are 2 main treatment choices for cervical lesions: remineralization and restoration. Remineralization involves the use of products such as topical fluorides and amorphous calcium phosphates. Topical fluorides must be used at home and must be supplemented with regular professional application of fluoride varnish. Adjunctive use of amorphous calcium phosphates
will increase remineralization; MI Paste (GC America) in particular has shown impressive clinical results in reducing hypersensitivity19–21 (please see Part 1 of this series on p. 427). Restoration of cervical lesions may be undertaken when esthetics is an issue or when soft caries and cavitation have occurred. The use of glass ionomers and composite resins either alone or in combination (with a sandwich technique) is generally recommended.20 Glass ionomers will adhere to the dentin and assist in reducing hypersensitivity and enhancing internal remineralization.14 The resin-modified glass ionomers were designed for use in these situations and have a wider colour range than traditional glass ionomers.14

Tunnel and Slot Preparations

Access to and conservative restoration of interproximal carious lesions can be challenging. Tunnel and slot preparations are conservative preparations that can be used effectively in older patients. Slot preparations are indicated for lesions that are less than 2.5 mm from the marginal ridge.11,12 Glass ionomer, composite or amalgam can be used, and indeed slot amalgams have proven as successful as traditional Class II amalgams.22 If needed, a preventive resin or glass ionomer restoration can be placed over the occlusal surface.23 In certain carefully chosen cases where the lesion is more than 2.5 mm from the marginal ridge, a tunnel preparation can be used. In-depth description of this technique is provided elsewhere.11,12,24 In general, initial access is gained through the fossa immediately medial to the marginal ridge.14 This entry area should not be under occlusal load. A small tapered cylinder bur is aimed at the lesion, after which a long-shanked bur, held in a more upright position, is used to increase visibility. Small round burs and hand instruments are used to complete the preparation. Glass ionomer is the material of choice, as some of the demineralized interproximal areas will not be removed, and the interproximal enamel cannot be bevelled.14

Techniques for “Wet” Subgingival Environments

In many older patients, especially those with poor oral hygiene, it can be extremely challenging to control bleeding and saliva during restoration of subgingival carious lesions, which tend to recur around large restorations and crowns. The use of a rubber dam, electrosurgery, periodontal surgery and retraction techniques may not be feasible for some older patients and in some geriatric dental settings. Behaviour and communication problems can further increase the need for a quick and efficient method for restoring such lesions.25 Because it may be difficult to penetrate these deep subgingival areas with a curing light, the materials of choice are amalgam or conventional glass ionomer. A glass ionomer such as Fuji Triage works well in these “wet” environments because it has low viscosity and does not “run” (Fig. 3). As with all conventional glass ionomers, the clinician must wait several seconds before carving, and the gingiva should be used to guide subgingival carving.

Vital Pulp Therapy

For deep carious lesions in older patients, vital pulp therapy, a conservative MID technique involving stepwise remineralization and biocompatible dental materials, can be used.11,12 Vital pulp therapy provides an optimal clinical result, especially when finances, time and behaviour problems limit the clinical treatment options. Whenever possible, it is advisable to have a periapical radiograph of the tooth being treated to ensure the absence of periapical abnormalities; however, obtaining such radiographs may be a challenge in some geriatric dental treatment settings. If radiographs are not available, the clinician must determine the extent of bacterial infection in the pulp and the feasibility of vital pulp therapy. The lower layers of dentin may not be infected and can often be retained during caries removal.11,12,16 The following stepwise excavation technique is used: remove only as much marginal enamel as necessary to gain access to the carious lesion and remove the infected dentin (additional dentin should only be removed around the complete circumference of the lesion to enable bonding of restorative material and minimization of microleakage).11,12,14 In the traditional stepwise technique, a “temporary” restoration is placed at this stage, with a note in the patient’s record that the tooth is not caries-free; the material of choice is glass ionomer to encourage internal remineralization. The temporary restoration is left in place for 3 to 6 weeks, but no longer than 6 months.11,12,16 Pulp vitality is reassessed, and the clinician has the option of removing all or some of the temporary restoration to place a permanent restoration. It is advised to leave some glass ionomer material in the deepest part of the lesion as a base for the final restoration.11,12,16 It has been shown that the number of bacteria decreases during stepwise excavation procedures and that deep lesions become clinically arrested after restoration.14,16,26 The stepwise excavation of caries will change the cariogenic environment and will also limit the removal of carious dentin close to the pulp to reduce the risk of an iatrogenic pulp exposure.14,16,26

In rational treatment planning for older patients, a modification of this vital pulp therapy technique is often required, whereby stepwise excavation may be limited to the initial stage and the restoration that is placed is not temporary but permanent. This method is required in cases of ringbarking of root caries (circumferential caries), palliative care, behaviourally difficult patients, patients seeking emergency care and patients who can visit a dentist only intermittently. It is also an option when patients and their caregivers refuse to have “unsavable” teeth extracted, when a “repair” is the only reasonable option.
and when extensive subgingival restorations are needed around complex restorations such as crowns and bridges.

Geriatric Atraumatic Restorative Technique

In some clinical settings where access to rotary hand-pieces is limited, such as in nursing homes or patients’ homes, only hand instruments may be available for removing caries. In these settings, an atraumatic restorative technique using glass ionomer may be appropriate. The choice of glass ionomer material will be limited only by the clinician’s access to a triturator and a curing light. The diversity of conventional glass ionomer materials is increasing and provides choice among hand-mixed materials, paste-pak and triturated capsules. At present, resin-modified glass ionomers are available in the latter 2 forms, which require use of a curing light. As discussed previously, both conventional and resin-modified glass ionomers require a seal, and in these settings a varnish or a light-activated resin enamel bond can be applied.

Conclusions

Geriatric MID offers the dental professional working with older patients realistic, rational, evidence-based options for treating oral disease. Geriatric MID restorative techniques will continue to evolve with the development of more biocompatible restorative materials to help address the ever-increasing challenges encountered with dentate older patients.

THE AUTHOR

Acknowledgement: The author would like to thank Drs. Hien Ngo and Graham Mount for their advice concerning the MID concepts used in this article.

Dr. Chalmers is associate professor and director of geriatric and special needs program, preventive and community dentistry, College of Dentistry, The University of Iowa, Iowa City, Iowa.

Correspondence to: Dr. Jane Chalmers, Preventive and Community Dentistry, College of Dentistry, University of Iowa, Iowa City, Iowa USA 52242. Email: jane-chalmers@uiowa.edu.

Dr. Chalmers is a member of the Speakers’ Bureau for GC America.

References