Epidemiologic evidence indicates that the prevalence of dental caries in the permanent dentition among United States and Canadian children and adolescents has been decreasing.\(^1\,^2\) For example, in 1958–1959 the mean decayed, missing or filled permanent teeth (DMFT) score for 13-year-old children in Toronto was 5.7; in 1999–2000, it had decreased to 1.1.\(^3\) Dental caries, however, is still a significant problem. Currently, in the United States, 20% of children between the ages of 2 and 4 years have detectable caries, and approximately 80% of youth will have had a cavity by the age of 17 years.\(^4\)

Although the prevalence of caries has been decreasing in the general population, it remains high among Canadian Aboriginal and Native Americans.\(^5\,^6\) A comparison of 2 national oral health surveys\(^7\,^8\) of Canadian Aboriginal children 6 and 12 years of age conducted in 1990–1991 and, most recently, in 1996–1997, found that the mean decayed, extracted or filled deciduous teeth (deft) score for 6-year-old children increased statistically significantly from 8.2 to 8.7, whereas the mean DMFT score increased nonsignificantly from 0.7 to 0.8. Overall, for children 12 years of age, there was little change in mean DMFT score (4.6 to 4.5).

According to these surveys, 6-year-old Aboriginal children in Ontario had the highest deft score of the 9 regions in the survey; their mean score was 11.1 in 1990–1991,
which increased slightly to 11.7 in 1996–1997. This age group also demonstrated a statistically significant increase in their DMFT score from 0.8 to 1.1. Although not the highest in the country, the mean DMFT score increased slightly from 5.2 to 5.4 for 12-year-old children in Ontario. Two of the communities in the District of Manitoulin were included in the 1990–1991 national survey. For West Bay (now M’Chigeeng) and Wikwemikong, the mean deft+DMFT score was 4.5 for children 6 years of age and the mean DMFT score was 2.6 for children 12 years of age.7

Although dental health is improving among Canadian children in the general population, First Nations children continue to demonstrate persistently poorer dental health than their peers. This occurs despite the First Nations and Inuit program from Health Canada that provides payment for a comprehensive list of preventive and dental treatment services, including orthodontics.

It is a common misconception that there is an abundance of studies documenting the dental health of First Nations and Native American children. In fact, current epidemiologic data available at the community level for this group of children and adolescents are limited. Continued research initiatives investigating dental health are warranted.

Since the Noojmowin Teg Health Centre needed baseline data to plan a community-based dental health program to comply with the community board’s directive to document and deal with the issue of dental health, an epidemiologic survey was conducted to determine the prevalence of dental caries, calculus and debris scores in children 3, 5, 7 and 13 years of age in the District of Manitoulin. This paper presents the results of a survey of the dental caries found in children 7 or 13 years of age, and compares the findings with published data for the same age groups from other First Nations communities in Canada.

Methods

Research Process

This study received ethical approval from the McMaster University Research and Ethics Board, and was supported by the 4 Aboriginal health boards and committees in the District of Manitoulin. The protocol complied with the standards and procedures outlined in the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans.13 Conducted in collaboration with local Aboriginal communities and the Noojmowin Teg Health Centre, the study followed a participatory action-research framework.14,15 The health centre, located on Manitoulin Island, provides both traditional and Western health services to all the residents of all 7 First Nations communities in the district. This framework permitted a collaboration between the university-based investigators and a community-based research steering committee in all phases of the project, including the formulation of research questions, data collection, development of research instruments and interpretation. A research partnership formed between Noojmowin Teg and the external researchers was instrumental in ensuring that the research was seen as community-defined and culturally appropriate. This ensured continued community interest and participation over the duration of the investigation.

Population

We set out to examine all First Nations children aged 7 or 13 years in the 7 First Nations communities in the District of Manitoulin. These age groups were selected because children whose ages are an odd number are surveyed by local health units using the Ontario Ministry of Health’s Dental Index System. Seven- and 13-year-old children at all elementary schools on a reserve were identified from classroom lists obtained from each school. Community health representatives (CHRs) serving 6 communities had knowledge of and contact with all families, and identified all children 7 or 13 years of age attending school off the reserve in 6 of the 7 communities. We were unable to identify eligible children attending school off reserves in the seventh community because no CHRs were involved. Children were not examined if they were absent or refused examination on the survey day or their caregiver did not provide written consent. Of an estimated 104 potential participants attending schools both on and off reserves, 66 were examined.

Clinical Examinations

All examinations were conducted over a 4-month period from March to June 2000 by 1 dental hygienist (RT) calibrated to conform to the Ontario Ministry of Health Dental Indices Software Program Manual (unpublished manual, 1997) by another investigator (JLL). The examiner was trained in the community to be surveyed and the session included a half-day seminar to review the nature of epidemiologic surveys, examination and record-keeping; the clinical criteria and numeric codes used; and the safe handling of completed data forms. During a second half-day session, clinical examinations were done for 4 children, followed by a review and resolution of the differences between the trainee and the benchmark examiner. All children were examined with a mirror, blunt probe and consistent light source in their school or home. We examined children at home when we were unable to do so at their school or a clinic. Since precision during these examinations was needed to make future policy decisions, we scored tooth status rather than surface-level caries. We did not repeat examinations because of the limited availability of both the examiner and funding for this study. It was thought that the examiner’s time could be best used by servicing children who were hard to reach.
Prevalence of Dental Caries Among 7- and 13-Year-Old First Nations Children

According to the Ontario Ministry of Health guidelines, a lesion was considered active if it was located in a pit or fissure, or on a smooth tooth surface and had a detectably softened floor, undermined enamel or softened wall; if the explorer entered the dentine of an approximal surface lesion with examiner certainty; or if a tooth had a temporary filling. Data were recorded on a standardized survey form that also included the child’s date of birth, sex, ethnicity and community of residence.

Data Handling and Analysis

The principal investigator (SP) entered the data into EpilInfo6 and transferred them to SPSS 12.0 for analysis (SPSS Inc., Chicago, Ill.). A frequency distribution of the deft/DMFT scores was completed (Fig. 1). Analysis of variance (ANOVA) was used to evaluate the effects of age on dental health measures. We conducted a census of the population; therefore, significance testing was not carried out for other measures.

Results

We estimated that 122 children were eligible for the study, of which 104 were invited to participate and 66 were examined, for a response rate of 63%. All First Nations children examined lived on a reserve at the time of the survey.

Table 1 shows the results for the 2 age groups and for both boys and girls. The children had a high prevalence of caries (deft+DMFT or DMFT scores greater than zero): more than 94% of children 7 or 13 years or age had past or active decay. The mean caries score was lower for 13-year-old children. They had lower counts than the 7-year-old children on all measures: the 13-year-old children lost no teeth because of caries; they had fewer actively decayed teeth (an average of 0.6 compared with 1.5 for the 7-year-old children), and fewer filled teeth (3.6 versus 4.4).

Table 1 Comparison of the dental health of subjects by age and sex

<table>
<thead>
<tr>
<th>Variable</th>
<th>7-year-old children</th>
<th>13-year-old children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall Boys Girls</td>
<td>Overall Boys Girls</td>
</tr>
<tr>
<td>Number</td>
<td>37 16 21</td>
<td>29 10 19</td>
</tr>
<tr>
<td>% male</td>
<td>43 29 29</td>
<td>29 10 19</td>
</tr>
<tr>
<td>% caries prevalence</td>
<td>94.6 100.0 91.5</td>
<td>96.6 100.0 92.3</td>
</tr>
<tr>
<td>Deciduous teeth, mean ± SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound and sealed</td>
<td>0.0 ± 0.2 0.1 ± 0.2 0.0 ± 0.0</td>
<td>1.2 ± 1.8 0.6 ± 1.3 1.5 ± 2.0</td>
</tr>
<tr>
<td>Decayed</td>
<td>1.2 ± 1.5 1.4 ± 1.8 1.0 ± 1.2</td>
<td>0.6 ± 1.1 0.4 ± 1.3 0.6 ± 1.0</td>
</tr>
<tr>
<td>Extracted</td>
<td>0.3 ± 0.6 0.3 ± 0.4 0.3 ± 0.7</td>
<td>0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0</td>
</tr>
<tr>
<td>Filled</td>
<td>4.0 ± 2.8 3.9 ± 2.7 4.0 ± 3.0</td>
<td>3.6 ± 2.7 4.3 ± 2.7 3.2 ± 2.8</td>
</tr>
<tr>
<td>Scores</td>
<td>deft, mean ± SD</td>
<td>5.4 ± 3.1 5.6 ± 2.9 5.3 ± 3.3</td>
</tr>
<tr>
<td>Median deft</td>
<td>6.0 6.0 6.0</td>
<td></td>
</tr>
<tr>
<td>% f/deft</td>
<td>74 70 75</td>
<td></td>
</tr>
<tr>
<td>Permanent teeth, mean ± SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound and sealed</td>
<td>1.1 ± 1.5 0.8 ± 1.3 1.3 ± 1.7</td>
<td>1.2 ± 1.8 0.6 ± 1.3 1.5 ± 2.0</td>
</tr>
<tr>
<td>Decayed</td>
<td>0.3 ± 0.7 0.2 ± 0.4 0.4 ± 0.8</td>
<td>0.6 ± 1.1 0.4 ± 1.3 0.6 ± 1.0</td>
</tr>
<tr>
<td>Missing</td>
<td>0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0</td>
<td>0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0</td>
</tr>
<tr>
<td>Filled</td>
<td>0.4 ± 1.0 0.8 ± 1.3 0.2 ± 0.6</td>
<td>3.6 ± 2.7 4.3 ± 2.7 3.2 ± 2.8</td>
</tr>
<tr>
<td>Scores</td>
<td>DMFT, mean (SD)</td>
<td>0.8 ± 1.1 1.0 ± 1.4 0.6 ± 0.9</td>
</tr>
<tr>
<td>Median DMFT</td>
<td>0.0 0.0 0.0</td>
<td>3.0 4.5 3.0</td>
</tr>
<tr>
<td>% F/DMFT</td>
<td>50 80 33</td>
<td>88 91 84</td>
</tr>
<tr>
<td>Total (deft+DMFT), mean ± SD</td>
<td>6.2 ± 3.3 6.6 ± 3.1 5.9 ± 3.6</td>
<td></td>
</tr>
<tr>
<td>% total filled ratio</td>
<td>71 71 71</td>
<td></td>
</tr>
</tbody>
</table>

SD = standard deviation; deft = decayed, extracted or filled deciduous teeth; f/deft = proportion deft of teeth filled; DMFT = decayed, missing, or filled permanent teeth; F/DMFT = proportion DMFT of teeth filled.
Boys, both at 7 and 13 years of age, were worse off on most measures of disease. All boys had 1 or more teeth affected by past or active decay, compared with 91.5% of 7-year-old girls and 92.3% of 13-year-old girls. Boys in both age groups had higher mean deft or DMFT caries scores. Although 7-year-old boys had a lower proportion of deciduous teeth filled, the proportion of permanent teeth filled was greater for both 7- and 13-year-old boys. Compared with 7-year-old children, 13-year-old children had a higher proportion of their teeth filled ($p < 0.001$).

Further analysis found that the children had not only restorations, but also fissure sealants. Overall, 39% of the children had received 1 or more sealants (40% of 7-year-old children, 38% of 13-year-old children). The mean number of sound teeth with sealants was 1.1 for the 7-year-old and 1.2 for the 13-year-old groups. The mean DMFT score for the 13-year-old group with sealants ($n = 11$) was 3.5 (standard deviation [SD] 2.6) and for those without sealants ($n = 18$), 4.4 (SD 2.6).

Table 2 compares the results for the largest community, Wikwemikong Unceded Indian Reserve, with those for all other communities combined. Wikwemikong is the only First Nations community that provides dental services on the reserve. However, private dentists have offices in communities off the reserve that are equally accessible for these First Nations communities. The table shows no statistically significant differences in dental health for 7-year-old children by community. Since only 6 of the 13-year-old children in Wikwemikong were examined, their findings were not thought to be sufficiently representative to report.

Table 3 shows the different types of decay for both age groups. The 7-year-old group had more smooth-surface decay than pit and fissure decay in their deciduous teeth (0.60 versus 0.20 teeth), but had more pit and fissure decay in their permanent teeth (0.10 versus 0.05 teeth). Pit and fissure decay constituted all incidences of untreated disease in the 13-year-old group. Active decay on previously filled teeth constituted 27% of the total decay score for the 7-year-old group.

Table 2 Comparison of 7-year-old children with caries from Wikwemikong and other communities combined

<table>
<thead>
<tr>
<th>Variable</th>
<th>Wikwemikong</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>% male</td>
<td>53</td>
<td>35</td>
</tr>
<tr>
<td>% caries prevalence</td>
<td>94</td>
<td>95</td>
</tr>
</tbody>
</table>

Deciduous teeth

- Mean deft ± SD: 5.5 ± 3.6, 5.4 ± 2.8
- % deft: 71, 74

Permanent teeth

- Mean DMFT ±SD: 0.9 ± 1.4, 0.6 ± 0.8
- % F/DMFT: 67, 67
- Total, mean deft+DMFT ±SD: 6.4 ± 3.8, 6.0 ± 2.9
- % total filled ratio: 70, 72

SD = standard deviation; deft = decayed, extracted or filled deciduous teeth; % deft = proportion deft of teeth filled; DMFT = decayed, missing or filled permanent teeth; F/DMFT = proportion DMFT of teeth filled.

Table 3 Type of tooth decay for 7- and 13-year-old children

<table>
<thead>
<tr>
<th>Type of decay</th>
<th>7-year-old children ($n = 37$)</th>
<th>13-year-old children ($n = 29$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth surface</td>
<td>0.6 ± 1.0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Pit and fissure</td>
<td>0.2 ± 0.6</td>
<td>0.6 ± 1.1</td>
</tr>
<tr>
<td>Pit and fissure and smooth surface</td>
<td>0.0 ± 0.2</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Filled and decayed</td>
<td>0.3 ± 0.5</td>
<td>0.0 ± 0.0</td>
</tr>
</tbody>
</table>

Values are expressed as means ± standard deviation.

In this study, we found that dental caries is highly prevalent and increasing in severity in the First Nations children of the District of Manitoulin, Ontario. We found a mean deft+DMFT score of 6.2 for the 7-year-old group and a mean DMFT score of 4.1 teeth for the 13-year-old group. Ninety-six percent of all children had 1 or more active or past carious lesions (94.6% of 7-year-old children: 96.6% of 13-year-old children). In general, boys developed more caries and had similar or higher levels of treatment than girls. This is contrary to previous reports that show that females usually have more caries than males of the same age. The reasons for these differences in our findings are not known.

All First Nations children with positive parent or guardian consent who were either 7 or 13 years of age on the day of the epidemiologic survey were given the opportunity to participate in the study. Sixty-three percent of potentially eligible children participated in the study. To put this response rate in context, we must look at this study within the social and historical context of this community. Because the residents have experienced numerous top-down investigations have not resulted in relevant program improvements. As a consequence, local communities may have little confidence in research leading to observable improvements in health status, which in turn, makes recruiting participants very difficult.

To minimize the effect of the participation rate on the findings, we conducted examinations at places of residence.
However, it is possible that the children we examined had caregivers who had a greater interest in dental health and consequently the children had better dental health, resulting in our underestimating the burden of illness. On the other hand, parents may have more readily given consent for those children who had symptoms, biasing the findings towards a greater prevalence of disease. Overall, we think that these balanced out, resulting in a relatively unbiased finding.

Participation rates were lowest among children residing in Wikwemikong attending schools both on and off the reserve. Because of the limited resources available for this study, we were unable to employ CHRs in this community. Residents of Wikwemikong are dispersed in many satellite communities over a large geographical area (417 square kilometres), some households are without telephones, and many unreturned consent forms could not be followed up because no CHRs were available. In all other communities in which the response rates were higher, CHRs actively encouraged participation among members. However, there were no statistically significant differences in our measures among 7-year-old children between Wikwemikong and the other communities, so we believe that the lower rate of participation in this community did not affect the results.

Overall, boys were also underrepresented in the study. Reasons for this are not known. However, based on our findings, a gender-balanced sample would have increased the mean DMFT score by 0.1, to 4.2 for the 13-year-old group, and would not have affected the mean deft score for the 7-year-old group. Therefore, we believe that our findings closely represent the population values.

Our finding of a 6.2 deft+DMFT score at age 7 years and a 4.1 DMFT score at age 13 years places this population in somewhat better health than national estimates of caries severity place Aboriginal children 6 and 12 years of age and other available published data indicate for 7- and 13-year-old First Nations children in Canada. Statistical tests of the differences in our measures between communities over a large geographical area (417 square kilometres), some households are without telephones, and many unreturned consent forms could not be followed up because no CHRs were available. In all other communities in which the response rates were higher, CHRs actively encouraged participation among members. However, there were no statistically significant differences in our measures among 7-year-old children between Wikwemikong and the other communities, so we believe that the lower rate of participation in this community did not affect the results.

The lower deft and DMFT scores for the children in the District of Manitoulin than those for children of a similar age documented in the literature can be explained by the circumstances of these studies. In the study of “Native children” in British Columbia, those surveyed were seeking dental treatment planning, which may have resulted in the study including children with symptoms and therefore a greater incidence of caries. Smaller regional studies were conducted a decade or longer ago.

Our findings raise the question of whether the lower deft and DMFT scores observed in 2000 for this population merely reflect similar trends in the improvement in dental health documented for North American children and adolescents in general. Evidence for such a trend among Native American and Canadian Aboriginal children and adolescents comes from the 1991 Indian Health Service Patient Oral Health Status and Treatment Needs Survey of Native American children that reported a decline in mean DMFT scores for children 5 to 19 years of age and in mean DMFT scores for children 0 to 9 years of age. Similarly, at the regional level in Canada, Harrison and Davis reported an improvement in dental health among “Native children” in British Columbia surveyed in 1980 and 1988. Mean deft scores decreased from 7.4 to 6.5 for 7-year-old children, and mean DMFT scores decreased from 9.1 to 6.0 for 13-year-old children. Messer, in his examination of Inuit children in the communities of Nain, Hopedale and Makkovik in Labrador in 1969 and 1984, found improvements in 2 of 3 surveyed age groups: mean deft+DMFT scores decreased from 9.8 to 8.0 for 7-year-old children, but mean DMFT scores increased slightly for 15-year-old adolescents (from 8.2 to 8.4).

However, the most recent data from 2 Canadian studies found virtually no trend. These surveys conducted in 1990–1991 and in 1996–1997 found a slight increase in deft+DMFT scores for 6-year-old children, but very little change in the permanent dentition for 12-year-old children.

Two of the communities participating in our study, West Bay (now M’Chigeeng) and Wikwemikong, were included in the 1990–1991 national survey. The mean deft+DMFT was 4.5 for 6-year-old children and the mean DMFT was 2.6 for 12-year-old children. Our more recent findings for age groups only 1 year older show that dental caries has increased in severity in these communities.

Behavioural and environmental factors, as well as socio-economic status, influence the development of caries in children and adolescents. Accordingly, lower deft and DMFT scores may be the result of more accessible dental services, greater use of sealants, higher socio-economic levels, or other factors not analyzed for this report. However, the trend toward increasing severity was unexpected, given the secular trend in caries development in the general population and the completely insured access to dental care offered to First Nations people.

Conclusion

The prevalence of caries is high in this population, confirming the results of a parallel report about children 3 or 5 years of age. However, the older children in our study showed relatively high rates of treated decay: the filled ratio was 88% for 13-year-old children.

There is good evidence that sealants are effective for high-risk children, as long as the sealant is completely retained on the tooth surface. Sealants are more effective in preventing further caries and providing cost savings in a shorter time span when placed in children who have a high risk of caries. Given that all the decay in the teeth of 13-year-old children was pit and fissure, and that those
with sealants had a lower mean DMFT score, future preventive programs should include sealants.

Acknowledgement: Noojmowin Teg Health Centre funded this study.

Ms. Peressini is a PhD candidate in the department of community dentistry, faculty of dentistry, University of Toronto, Toronto, Ontario.

Dr. Leake is professor and head of the department of community dentistry, faculty of dentistry, University of Toronto, Toronto, Ontario.

Dr. Mayhall is professor emeritus in the department of community dentistry, faculty of dentistry, University of Toronto, Toronto, Ontario.

Ms. Maar is research and evaluation coordinator at the Noojmowin Teg Health Centre, Little Current, Ontario, and a PhD candidate in the department of anthropology, McMaster University, Hamilton, Ontario.

Mr. Trudeau is a registered dental hygienist.

Correspondence to: Ms. Sabrina Peressini, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6. E-mail: s.peressini@utoronto.ca.

The authors have no declared financial interests.

References

