Multiple Odontogenic Keratocysts: Report of a Case

Ajit Auluck, MDS; Setty Suhas, MDS; Keerthilatha M. Pai, MDS

ABSTRACT

Although odontogenic keratocysts are common in clinical practice, the simultaneous occurrence of multiple cysts in both the maxilla and mandible of a patient is rare. We report a case of an otherwise healthy individual who developed 17 cysts over 15 years.

MeSH Key Words: mandibular diseases/pathology; maxillary diseases/pathology; odontogenic cysts/pathology

Usualy, multiple odontogenic keratocysts (OKCs) occur as a component of nevoid basal cell carcinoma syndrome (NBCCS) with concomitant cutaneous, skeletal, ophthalmic and neurologic abnormalities. Gorlin and Goltz first described the spectrum of features associated with this syndrome in 1960; hence, it is also called Gorlin-Goltz syndrome. We discuss the possibility that the current case is a partial expression of NBCCS and briefly review the current trends in treatment of recurrent OKCs associated with this syndrome.

Case Report

A 22-year-old patient presented with a complaint of pus discharge from the left maxillary posterior gums over the previous week. He did not complain of pain, facial swelling or foul odour and was apparently healthy, with vital signs within normal limits.

The patient had a history of multiple jaw surgeries for cysts, summarized in Table 1. Complete details of these surgeries were not available, as they were performed at a different hospital. On all those occasions, except one, the cysts were diagnosed as OKCs; in one case the diagnosis was dentigerous cyst.

Intraoral examination revealed a partly edentulous state; teeth 22, 23, 33, 34, 47 and 48 were missing and there was slight expansion of the buccal cortical plate in the left maxillary posterior region. With pressure, a white creamy exudate oozed out of the area distal to tooth 28, but there was no tenderness or bleeding.

A panoramic radiograph (Fig. 1) and intraoral periapical radiographs revealed multiple radiolucencies in all 4 quadrants and taurodontism in the left lower first and second molars. The radiolucencies are described in Table 2.

The patient’s chest and skull radiographs were unremarkable. Dermatology consultation did not reveal any cutaneous abnormality.

Hematologic investigations were within normal limits. The patient was admitted to hospital, and enucleation of the cystic lesions was performed under general anesthesia. Three lesions (excluding the small lesion distal to tooth 46) were enucleated and sent for histopathologic examination. The small cystic lesion distal to tooth 46 was kept under observation.

The histopathologic report revealed that the cystic lining of all 3 lesions was parakeratinized stratified squamous epithelium of
uniform 6–8-cell thickness (Fig. 2). The lining epithelium consisted of well-defined columnar basal cells in a palisade arrangement and with polarized nuclei. The height of the epithelial cells and the number of nuclei they contained were reduced. Satellite cysts (Fig. 3) and epithelial remnants were observed in the connective tissue capsule.

Discussion

Multiple OKCs usually occur as a component of NBCCS or Gorlin-Goltz syndrome, orofacial digital syndrome, Noonan syndrome, Ehler-Danlos syndrome, Simpson-Golabi-Behmel syndrome or other syndromes. Our patient was apparently healthy and had no features suggestive of these syndromes, such as basal cell carcinoma, skeletal or orofacial defects, stunted growth, bleeding diathesis, hyperextensible skin and hypermobile joints or other congenital anomalies associated with overgrowth.

NBCCS can also include concomitant skeletal features, such as bifold rib, frontal and parietal bossing and mandibular prognathism, and cutaneous abnormalities, such as multiple basal cell carcinomas and palmar and plantar keratosis. Hypertelorism, mental retardation, strabismus, calcification of the falx cerebri and medulloblastoma have also been reported. In our patient, none of these features indicative of NBCCS was present.

Based on histopathologic studies, parakeratinization, intramural epithelial remnants and satellite cysts are more frequent among OKCs associated with NBCCS than in solitary keratocysts. In our patient, the lining of the OKCs revealed the presence of parakeratinization and epithelial remnants in the connective tissue wall indicating NBCCS association.

Solitary keratocysts have greater epithelial height and more nuclei and basal nuclei compared with the multiple keratocysts of NBCCS. In our case, the lining of the multiple OKCs had lower epithelial height and fewer nuclei than are common in the cystic lining of solitary keratocysts, suggesting NBCCS association. Immunohistochemical detection has shown that cytokeratins CK17 and CK19 are overexpressed in OKCs, suggesting that this may be a valuable additional parameter to distinguish between OKCs and other odontogenic cysts. Cytokeratin expression was not investigated in our patient.

The biologic behaviour of OKCs associated with NBCCS is more aggressive and these cysts have higher recurrence rates (82%) compared with solitary keratocysts (61%). The higher recurrence rates are attributed to epithelial remnants of the cystic lining or satellite cysts left behind following surgery. A recurring OKC can be a new cyst that originates from epithelial residue or a microcyst left behind in the overlying mucosa. This is reinforced by the fact that OKCs can recur in bone grafts if the overlying mucosa is not completely excised. It is believed that the aggressive behaviour and high rate of recurrence of OKCs associated with NBCCS is due to a higher rate of proliferation of the epithelial lining. Our patient experienced a high rate of recurrence of cysts (Table 1). Thus, again, this case seemed to be a partial expression of NBCCS.

The term “multiple cysts” does not necessarily mean that the patient must have more than one cyst at a given time; rather it refers to the occurrence of cysts over the life time of the patient. Our patient had a history of solitary and multiple cysts (Table 1).

The occurrence of multiple OKCs may be the first and only manifestation of NBCCS. Multiple OKCs can occur a decade before other symptoms associated with NBCCS and clinical manifestations of NBCCS may remain hidden in the earlier years of life. Thus, a dentist may well be the first to detect this syndrome. The possibility of our young patient developing other features of NBCCS in the future cannot be excluded. We emphasize the need for thorough examination of patients with recurrent OKCs to detect other features of the NBCCS syndrome, which is known for its variability of expression.

The relatively early occurrence of multiple OKCs may be due to a genetic defect or mutation in the human
The gene whose mutations cause NBCCS has been mapped to the long arm of chromosome 9q22.1-3-1 and has no apparent heterogeneity. Approximately 50% of cases of NBCCS are associated with allelic losses at this site. The products of this gene may act as a tumour suppressor, as this gene controls growth and development of normal tissues. Reports suggest genetic influences stimulating the formation of OKCs in NBCCS. The occurrence of single or multiple OKCs in the absence of other features of the syndrome represents the least complete form of NBCCS as observed in our patient. The absence of family history and other features of the syndrome can be due to variation in penetration and expression of different mutations within the same gene or the effects of modifier genes and environmental factors.

In the treatment of recurrent OKCs associated with NBCCS, overlying surface epithelium should be excised along with the cystic lining to prevent recurrences from residual epithelial islands and microcysts. In addition, use of Carnoy’s solution following cyst enucleation (applied only over areas where the cyst is attached to the mucosa) and cryosurgery (because of the unique ability of liquid nitrogen to devitalize bone in situ while leaving the inorganic framework untouched) is advocated to kill epithelial remnants and dental lamina within the osseous

Table 1

<table>
<thead>
<tr>
<th>Age of patient (years)</th>
<th>No. of cysts</th>
<th>Site</th>
<th>Classification of cyst</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>Left maxilla in region of teeth 62 and 63</td>
<td>New</td>
<td>Observation</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>Same cyst in region of teeth 62 and 63</td>
<td>—</td>
<td>Enucleation of cyst in region of teeth 62 and 63 with extraction of tooth 62</td>
</tr>
<tr>
<td>9^</td>
<td>2</td>
<td>Left mandible in region of teeth 73 and 74</td>
<td>New</td>
<td>Enucleation and extraction of teeth 33 and 34 buds</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Left mandible in region of tooth 35 Right maxilla in region of teeth 23 and 24</td>
<td>New New</td>
<td>Enucleation with extraction of teeth 22 and 23</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Lower right mandible in region of teeth 47 and 48</td>
<td>New</td>
<td>Enucleation with extraction of teeth 47 and 48</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>Left mandible in region of teeth 32 and 33</td>
<td>Recurrent</td>
<td>Enucleation</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>Left maxilla in region of tooth 28 Left maxilla in region of tooth 23 Right maxilla in region of tooth 17</td>
<td>New Recurrent New</td>
<td>Enucleation Enucleation Enucleation</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>Left mandible in region of teeth 37 and 38 Left maxilla in region of teeth 22 and 23 Right maxilla in region of teeth 17 and 18</td>
<td>New Recurrent Recurrent</td>
<td>Enucleation Enucleation Enucleation</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>Right maxillary in apical region of tooth 17 Left maxilla, distal to tooth 28 Left mandible distal to tooth 37 Right mandible distal to tooth 46</td>
<td>Recurrent Recurrent Recurrent</td>
<td>Enucleation Enucleation Enucleation</td>
</tr>
</tbody>
</table>

^Diagnosis of dentigerous cyst was considered.

Table 2

<table>
<thead>
<tr>
<th>Region</th>
<th>Radiographic appearance</th>
<th>Approximate size (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apical to tooth 17</td>
<td>Well-defined multilocular</td>
<td>2 × 1</td>
</tr>
<tr>
<td>Distal to tooth 28</td>
<td>Well-defined unilocular</td>
<td>4.5 × 3</td>
</tr>
<tr>
<td>Distal to tooth 37</td>
<td>Well-defined unilocular</td>
<td>1 × 1</td>
</tr>
<tr>
<td>Distal to tooth 46</td>
<td>Well-defined unilocular</td>
<td>0.5 × 0.5</td>
</tr>
</tbody>
</table>
margin and, thus, prevent recurrences.17,18 Cryosurgery using liquid nitrogen is indicated not only to prevent recurrent OKC, but also in large complex mandibular lesions if there is a chance of involvement of vital structures with conventional treatment and, finally, in noncompliant patients.18 OKCs are considered to be benign cystic neoplasms and require modified surgical procedures, such as curettage of bony walls, peripheral ostectomy with a bone bur or, occasionally, jaw resection.19

In our patient, 3 cysts were enucleated under general anesthesia and Carnoy’s solution was applied to the osseous margins. The patient was followed regularly and after 18 months of treatment had no symptoms of recurrence of cysts, no increase in the size of the small cyst distal to tooth 46 and no occurrence of other features associated with NBCCS.

There is no specific laboratory test to diagnose NBCCS, although affected patients may have high levels of cyclic adenosine monophosphate and impaired phosphate diuresis on parathormone challenge.20 The diagnosis is made clinically using the criteria suggested by Evans and others21 (Table 3) and Kimons and others22 (Table 4). However, there may be variations in the major diagnostic criteria for NBCCS in some populations due to genetic and geographic differences.23 Our patient did not meet any of these diagnostic criteria for NBCCS. But in view of the clinical history and histopathologic correlations (Table 2), we suggest the possibility of this case being a

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Clinical characteristics} & \\
\hline
Occur at an early age & Occur at middle or older age \\
Multiple cysts & Isolated cysts \\
Occur in both jaws with equal frequency & Occurs more often in the lower jaw \\
Higher recurrence rate (82\%) & Lower recurrence rate (61\%) \\
\hline
\textbf{Histopathologic characteristics} & \\
Smaller epithelial height & Greater epithelial height \\
Fewer total and basal nuclei & More total and basal nuclei \\
More frequent occurrence of odontogenic islands and daughter cysts & Less frequent occurrence of odontogenic islands \\
\hline
\end{tabular}
\caption{Comparison of odontogenic keratocysts (OKCs) associated with nevoid basal cell carcinoma syndrome (NBCCS) and solitary OKCs}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Major criteria} & \\
\hline
More than 2 basal cell carcinomas (BCCs), 1 BCC before 30 years of age; or more than 10 basal cell nevi & \\
Any odontogenic keratocyst (proven on histology) or polyostotic bone cyst & \\
3 or more palmar or plantar pits & \\
Ectopic calcification; lamellar or early (< 20 years of age) falx calcification & \\
Family history of nevoid basal cell carcinoma syndrome & \\
\hline
\textbf{Minor criteria} & \\
Congenital skeletal anomaly (e.g., bifid rib, fused, splayed or missing rib, wedged or fused vertebrae) & \\
Occipital–frontal circumference higher than the 97th percentile, with frontal bossing & \\
Cardiac or ovarian fibroma & \\
Medulloblastoma & \\
Lymphomesenteric cysts & \\
Congenital malformations, such as cleft lip or palate, polydactyly or eye anomaly (cataract, coloboma, microphthalmos) & \\
\hline
\end{tabular}
\caption{Diagnostic criteria for nevoid basal cell carcinoma syndrome according to Evans and others21 (2 major or 1 major and 2 minor criteria should be satisfied for positive diagnosis)}
\end{table}

*All these features of NBCCS-associated OKCs were observed in our patient.
In conclusion, in any patient with multiple OKCs, the possibility of NBCCS must be considered. A complete clinical examination and histopathologic analysis must be performed to detect any features associated with this syndrome. As OKCs may be the first and only manifestation of NBCCS, the dentist may be the first to detect it and refer the patient to a clinical geneticist for counselling.

Table 5 Diagnostic criteria for nevoid basal cell carcinoma syndrome according to Kimons and others\(^{12}\)

<table>
<thead>
<tr>
<th>Major criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 2 basal cell carcinomas (BCCs) or 1 BCC in a patient < 20 years of age</td>
</tr>
<tr>
<td>Odontogenic keratocysts of the jaws (proven by histopathologic analysis)</td>
</tr>
<tr>
<td>3 or more palmar or plantar pits</td>
</tr>
<tr>
<td>Bilamellar calcification of the falx cerebri</td>
</tr>
<tr>
<td>Bifid, fused or markedly splayed ribs</td>
</tr>
<tr>
<td>A first-degree relative with NBCCS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrocephaly</td>
</tr>
<tr>
<td>Congenital malformations (e.g., cleft lip or palate, frontal bossing, coarse facies and moderate or severe hypertelorism)</td>
</tr>
<tr>
<td>Other skeletal abnormalities (e.g., Sprengel deformity, marked pectus deformity and marked syndactyly of the digits)</td>
</tr>
<tr>
<td>Radiologic abnormalities (e.g., bridging of the sella turcica, vertebral anomalies, modelling defects of the hands and feet, flame-shaped lucencies of the hands and the feet)</td>
</tr>
<tr>
<td>Ovarian fibroma or medulloloblastoma (not applicable if patient is male)</td>
</tr>
</tbody>
</table>

THE AUTHORS

Acknowledgement: We thank Dr. Krishnanand for his help in interpreting the histopathology slides.

Dr. Auluck is assistant professor in the department of oral medicine and radiology, Manipal College of Dental Sciences, Mangalore.

Dr. Suhas is Reader in oral medicine and radiology, Manipal College of Dental Sciences, Manipal.

Dr. Pai is professor and head of oral medicine and radiology, Manipal College of Dental Sciences, Manipal.

Correspondence to: Dr. Ajit Auluck, Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Mangalore Light House Hill Road, Mangalore, Karnataka 575001, India.

The authors have no declared financial interests.

References

