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C L I N I C A L P R A C T I C E

The goal of periodontal therapy is to protect and
maintain the patient’s natural dentition over his or
her lifetime for optimal comfort, function and

esthetic appearance.1,2

After periodontal or oral surgery, healing proceeds by
repair and regeneration. Repair is the healing of a wound by
tissue that does not fully restore the architecture or function
of the affected unit, whereas regeneration is reproduction
or reconstitution of a lost or injured part.3 Open periodon-
tal flap surgery, which provides access to the root, often
results in reduction of probing depth because repair occurs
with a healthy, long epithelial attachment. Occasionally,
osseous surgery is needed to eliminate periodontal pockets,
and gingival recession may result.1,4,5 Regenerative surgery,
including the use of barrier membranes and graft materials,
can reduce probing depths, support the formation of perio-
dontal ligament and allow regenerative rehabilitation and
functional reconstruction.2,6,7 The aim of regenerative
periodontal procedures is to induce regeneration at the
alveolar bone and cementum and to develop a new func-
tional periodontal ligament.2,8,9

The study of wound healing is a complex and growing
area that deals with many cell types and growth factors.9–11

After surgery, platelets begin to form a stable blood clot,

releasing a variety of growth factors that induce and support
healing and tissue formation.12–14 Administration of these
growth factors may be combined with tissue regeneration
techniques in the repair of intrabony defects, furcations and
cyst cavities. A recently developed procedure can be used to
create platelet-rich plasma (PRP), a concentrated suspen-
sion of growth factors that has been demonstrated to induce
healing and regeneration of tissues, including those in the
periodontal area.8,10,15–19 This review focuses on PRP and
the impact of the growth factors it contains. The aim is to
inform clinicians who are interested in recent surgical tech-
niques and to update practitioners’ knowledge about the
applications of PRP in dentistry.

Effects of PRP Growth Factors on Cells
Involved in Periodontal Wound Healing

As in other parts of the skeleton, hormones and growth
factors play important roles in the development of the
maxillofacial region. Various studies have examined the
effects of systemic hormones and growth factors on bone and
soft-tissue metabolism.11,20–24 In particular, growth factors
regulate cellular events in wound healing, such as prolifera-
tion, differentiation, chemotaxis and morphogenesis of
tissues and organs.9,11 Growth factors may act in an
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autocrine, paracrine or endocrine manner. They are
deposited in the extracellular matrix and are then released
during matrix degradation. Their interaction with surface
receptors on the target cells activates an intracellular
signalling pathway that induces transcription of the
messenger RNA and proteins needed for the regenerative
process. These growth factors, in combination with other
transcription factors, then activate a set of genes. The
growth factors also induce specific changes at the cellular
level. All of these effects are controlled by feedback 
mechanisms involving binding proteins and other growth
factors.9,11

At a more specific level, periodontal wound healing
involves gingival fibroblasts, gingival epithelial cells, peri-
odontal ligament fibroblasts and osteoblasts, all of which
are important for tissue repair and hard-tissue regeneration.
A series of well-orchestrated cell–cell interactions is initi-
ated after injury. Disruption of the vasculature as a result of
injury leads to fibrin formation and platelet aggregation.
Several growth factors are then released into the tissue from
the platelets and from the adjacent cells after injury, includ-
ing platelet-derived growth factor (PDGF), transforming
growth factor-alpha, transforming growth factor-beta
(TGF-b) and insulin-like growth factor I (IGF-I).25–28 Bone
and cementum may also release growth factors during
wound healing.9

Periodontal and oral surgical techniques may involve use
of these factors in both soft and mineralized tissues.9,11,15

For example, local application of growth factors is used to
promote healing, especially regeneration.9,11 Numerous
studies, including some dental research, have shown that
PDGF, TGF-b and IGF-I are found in PRP and, because of
their impact on wound healing, the use of these factors has
led to promising results.8,15–17,19,25,29–35 The next few para-
graphs provide some background information about these
PRP-related growth factors.

PDGF is a basic dimeric glycoprotein with 2 disulphide-
bonded polypeptides,36 referred to as A and B chains. Three
isoforms of PDGF are possible: AA, BB and the
heterodimeric AB.21,37 All isoforms of PDGF are released
after adhesion of platelets to an injured site. PDGF is the
most thoroughly described growth factor in terms of its
effects on the periodontium in vitro and in vivo. In vitro,
all isoforms have proliferative activity on periodontal 
ligament fibroblasts.38–40 PDGF is also chemotactic for
these fibroblasts, and it promotes collagen and protein
synthesis.41 Furthermore, the AA and BB isoforms enhance
proliferation of bone cells,21,42 increasing the production of
PDGF-AA in osteoblast cultures by an autocrine process.43

Gamal and Mailhot44 obtained dentin specimens from
periodontally diseased and healthy teeth and cultured peri-
odontal ligament fibroblasts over these specimens in vitro.
Various concentrations of PDGF-BB were added, and

fibroblast adherence and cell morphology were determined
after 24 hours. The optimal concentration of PDGF-BB for
inducing the periodontal ligament fibroblasts to adhere to
periodontitis-affected root surfaces was 50 ng/mL (similar
effects were achieved at higher concentrations).44

In reconstructive periodontal studies in rats, in vivo
application of PDGF increased bone regeneration in calvar-
ial defects when a resorbable membrane was used as a
carrier.45 The administration of PDGF with barrier
membranes increased the gain in periodontal ligament and
bone in Class III furcation defects in beagles.46 In peri-
odontal lesions of monkeys, the height of alveolar bone was
greater after a single dose of PDGF.47 PDGF also acts in
combination with other growth factors, as explained below.

IGF has 2 forms, I and II, each of which has 2 single-
chain peptides. IGF binds to the same receptors as insulin
and is involved in the development of many tissues, includ-
ing the teeth.48–51 Both forms of IGF are potent factors for
survival of hematopoietic cells, fibroblasts and the nervous
system.52–54 Both forms are found in bone, and IGF-II is
the most abundant growth factor in bone matrix.55

However, in the area of periodontal regeneration, more
research has been done on IGF-I. This form of IGF is
chemotactic for periodontal ligament cells, and it has
strong effects on periodontal ligament fibroblasts and
protein synthesis.41 IGF-I stimulates bone formation by
proliferation and differentiation,56,57 and it is synthesized
and secreted by osteoblasts.58 It also has dose-dependent
chemotactic effects on osteoblasts.59 An increase in the
proliferation of human osteoblasts has been demonstrated
with a combination of PDGF, IGF-I, TGF-b and epider-
mal growth factor.60

In vivo, application of IGF-I to the surface of rat molars
promoted cementogenesis after reimplantation.61 When
IGF-I was given in combination with PDGF, bone 
formation on implant surfaces was increased.62,63 The
combination of these factors with barrier membranes also
increased the bone–implant contact rate.64 In addition, the
combination of PDGF-BB and IGF-I promoted new bone,
periodontal ligament and cementum in natural disease
lesions in dogs and in ligature-induced periodontal lesions
in nonhuman primates.20,65 Human patients treated with
a combination of 150 mg/mL each of recombinant 
human platelet-derived growth factor-BB (rhPDGF-BB)
and rhIGF-I in a methylcellulose vehicle experienced
43.2% osseous defect fill, whereas the control group (vehi-
cle only) had 18.5% osseous fill.66

TGF-b is the name given to a group of homodimeric
proteins involved in the formation and development of
many tissues.67 Once secreted, ligand binds to transmem-
branous heterodimeric receptors, activating a group of
intracellular proteins. Then, phosphorylated intracellular
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proteins start an intracellular signaling pathway which in
turn activates a set of genes.68,69

In vitro, TGF-b has been observed to promote extracel-
lular matrix production in many cell types, such as peri-
odontal ligament fibroblasts.41,70 TGF-b1, used alone or in
combination with PDGF-BB, stimulates the proliferative
activity of periodontal ligament fibroblasts.38 TGF-b
enhances collagen gel construction in vitro, and its effects
are influenced by the combination of PDGF and IGF.71–73

In addition, TGF-b stimulates biosynthesis of type I colla-
gen and fibronectin and induces deposition of bone
matrix.70,74,75

In vivo, administration of TGF-b alone had no effect on
rabbit calvarial defects; however, it increased bone regener-
ation when applied with gelatin scaffolds.76 Repeated 
injections of TGF-b resulted in ossification by means of
endochondral bone formation in the long bones.77 When
TGF-b1 was applied with a biodegradable osteogenic mater-
ial in rabbits, bone growth across calvarial defects was signif-
icantly increased.78 In a recent study involving a canine
model, the application of rhTGF-b1 in conjunction with
nonresorbable barrier membrane greatly enhanced bone
regeneration in oral osseous defects (after 2 months).79

Although basic and clinical research has focused on
application of the growth factors just described, regenera-
tion of tissues can also be achieved through gene therapy. In
a recent review, Yao and Eriksson80 reported that short shelf
life and inefficient delivery to target cells are major
concerns associated with local administration of recombi-
nant human growth factors. The growth factors are expen-
sive, and many doses may be required to achieve any 
therapeutic effect.80 These authors concluded that, in light
of these limitations, gene therapy may be an appropriate
alternative in the future. 

Another easy, cost-effective way to obtain high concen-
trations of growth factors for tissue healing and regenera-
tion may be autologous platelet storage via PRP, as
described below.

PRP-Related Studies
Knowledge about growth factors and wound healing has

been enhanced by the development of an autologous
platelet gel or concentrate, PRP, which is used in various
surgical fields, including head and neck surgery, otolaryn-
gology, cardiovascular surgery, oral and maxillofacial
surgery, and periodontics, to enhance wound healing and
regeneration.18,29 PRP is a component of blood in which
the platelets are concentrated in a limited volume of
plasma.8,10,11,15,16,29 Medical literature provides evidence
that platelets contain many growth factors, including
PDGF, IGF and TGF-b, that enhance wound healing and
help to induce regeneration of the tissues.81,82 This 
autologous plasma is a rich source of growth factors and its
application has been reported as an effective way to induce

tissue repair and regeneration.18,29,83,84 Once platelets have
adhered to injured vessels (by collagen), they release gran-
ules containing serotonin, thromboxane and adenosine to
start the clotting process, which in turn leads to the forma-
tion of fibrin.85 From this insoluble network, the platelets
then release many growth factors inside the wound, of
which PDGF, IGF and TGF-b play the most important
roles. For example, PDGF is known to be characteristic for
monocytes and macrophages, and during wound healing it
is an activator of collagenase, which promotes the strength
of the healed tissue. TGF-b activates fibroblasts to form
procollagen, which results in deposition of collagen within
the wound.

In vitro, platelet membranes have been shown to stimu-
late the mitogenic activity of human trabecular bone cells,
thus contributing to the regeneration of mineralized
tissues.34 Another study demonstrated that the proliferation
rate of human osteoblast-like cells was (concentration-
dependent) increased up to a certain plateau by adding
thrombocytes; these in vitro results support the current
assumption that the clinical use of PRP may increase bone
regeneration.86

In an in vivo study, Aghaloo and others17 grafted 8-mm
rabbit calvarial defects with autogenous bone, PRP alone, or
autogenous bone and PRP; the control was no treatment.
The defects were evaluated by digital subtraction radiogra-
phy with step wedge calibration, histologic examination and
histomorphometric analysis at 1, 2 and 4 months. There was
a significant increase in bone area and bone density in the
defects treated with a combination of bone and PRP.17 Kim
and others31 placed titanium dental implants in the iliac
crest of dogs and used surgical methods to prepare circular
defects, which were then filled with a mixture of dentin and
plaster of Paris, with and without PRP. Histomorphometric
analysis revealed a higher percentage of bone contact in cases
where PRP was used in conjunction with the dentin-plaster
of Paris mixture. The authors concluded that bone defects
around the implants could be successfully treated with
dentin-plaster of Paris and that the outcome of the integra-
tion could be improved by application of PRP.31 Another
study assessed the efficacy of demineralized bone powder
alone or combined with PRP in enhancing the osseointe-
gration of dental implants in a dog model.87 Standard histo-
morphometric methods at 6 and 12 weeks after surgery
revealed a higher percentage of bone contact with bone
powder and PRP than with bone powder alone. The authors
concluded that bone defects around titanium implants
could be treated successfully with bone powder and that
PRP may improve bone formation.87

Human studies have also shown that PRP can be advan-
tageously and easily applied in surgery. Man and others18

used PRP in 20 patients undergoing cosmetic surgery,
including face lifts, breast augmentations, breast reductions
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and neck lifts. The application of PRP yielded adequate
hemostasis if platelet-poor plasma (PPP) was also applied to
create a seal to halt bleeding. The authors reported that
bleeding capillaries were effectively sealed within 3 minutes
after application of the platelet gel (PRP) and fibrin glue
(PPP). They also noted the advantage of minimizing use of
electrocautery so as to minimize the chance of damage to
the adjacent nerves. They concluded that PRP offered
significant benefits in terms of accelerated postoperative
wound healing, tissue repair and regeneration if PPP was
used as a hemostatic agent.18 Hiramatsu and others88 exam-
ined the effects of reinfusion of autologous platelet concen-
trate after open heart surgery in patients with noncyanotic
congenital heart disease. Such reinfusion of freshly prepared
autologous PRP was followed by good aggregation
responses and low blood loss. The authors suggested that
this procedure might be useful in pediatric open heart
surgery to avoid blood transfusion and minimize the need
for homologous blood products.88

The first clinical dental results with PRP were reported
by Marx and others in 1998, who used PRP to improve
graft incorporation in mandibular reconstructions in
patients who had received cancellous bone marrow grafts
after tumour removal.29 Their data strongly suggested
that adding PRP to bone grafts accelerated the rate and
degree of bone formation. The next year, Anitua19 studied
20 healthy patients for whom an extraction was indicated
because of a nontreatable tooth with vertical fractures or
severe periodontal disease and who were contemplating
subsequent implant placement so that biopsy samples could
be obtained without additional discomfort. After the
extraction, 10 of the patients received a mixture of autolo-
gous bone and PRP, whereas the control group received
only autologous bone. Those who received PRP demon-
strated much better epithelialization and compact mature
bone with well-organized trabeculae. The author suggested
that the application of PRP inside the wound improved
soft-tissue repair and bone regeneration and that the
augmented sites could be future candidates for dental
implant placement.19 In 2000, Kassolis and others30

used PRP with freeze-dried bone allograft for sinus 
elevation or ridge augmentation (or both) for 36 implant
placements. On histological evaluation of the biopsy speci-
mens 12 months later, numerous areas of osteoids and bone
formation were observed around the freeze-dried bone allo-
graft particles, with no evidence of inflammatory cell infil-
tration. The authors suggested a combination of PRP and
freeze-dried bone graft as an alternative therapeutic method
for implant placements.30 de Obarrio and others89 incorpo-
rated PRP into a combination technique involving bone
allograft and guided tissue regeneration as periodontal 
therapy for intrabony defects in humans. They observed

significant gain in clinical attachment and filling of the
treated defects, as revealed by 2-year follow-up.

Several methods have been demonstrated for covering
gingival recession defects.90–93 For example, Petrungaro15

recently published a case series in which PRP, subepithelial
connective tissue grafts and collagen membranes were used
to cover gingival recessions. PRP was applied within the
surgical area between the graft–membrane and root surface,
and the site was covered with PPP as a protective layer.
Although the therapy was successful in all cases, controlled
trials will be needed to determine the true significance of
PRP in the treatment of gingival recession defects.

To the authors’ knowledge, only 2 controlled clinical
trials examining the impact of PRP on periodontal regener-
ation have been published. In 2002, Lekovic and others16

compared a combination of bovine porous bone mineral
(BPBM), RPR and guided tissue regeneration with the
combination of PRP and BPBM for the treatment of intra-
bony defects in humans. Patients underwent a 6-month
follow-up to review defect filling. Both combinations, with
or without guided tissue regeneration, were effective in
patients with advanced periodontal disease.16 The same group
also determined that the combination of PRP and BPBM
provided additional regenerative effect in guided tissue 
regeneration. This regenerative potential of PRP was related to
strong clinical results such as reduction of pocket depth and
gain in attachment in combination with bone grafts.8

As outlined here, PRP offers many advantages: it
decreases the frequency of intraoperative and postoperative
bleeding at the donor and the recipient sites, facilitates
more rapid soft-tissue healing, aids in the initial stability of
the grafted tissue at the recipient sites (as a result of its cohe-
sive and adhesive nature), may promote rapid vasculariza-
tion of the healing tissue by delivering growth factors and,
in combination with bone replacement materials, induces
regeneration.

Preoperative PRP Preparation
PRP is prepared in a laboratory or a surgical or dental

suite from blood collected in the immediate preoperative
period.13,18,29 The use of platelet concentrates obtained
from blood banks by the discontinuous plasmapheresis
method is limited because of high cardiovascular stress to
the recipient, known health risks and high production
costs.94,95 However, some techniques for the preparation of
small amounts of autologous PRP for dental use can be
completed in minutes and involve less stress, especially for
elderly patients.

Two commercial systems are available for creating
PPP (fibrin glue): the SmartPReP autologous platelet
concentrate system (Harvest Autologous Hemobiologics,
Norwell, Massachusetts) and the Tisseel system (Baxter
Heath Corp., Deerfield, Illinois). It has been speculated
that the risk of disease transmission is not entirely 
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Figure 1: Steps in the preparation of platelet-rich plasma. Figure 2: Colour-coded platelet-rich plasma kit (Curasan, Pharma
Gmbh AG, Lindigstrab, Germany).

Figure 4: The tube is centrifuged at 2400 rpm for 10 minutes. A
second centrifugation is performed at 3600 rpm for 15 minutes.

Figure 3: The patient’s blood is drawn in the dental suite.

8 mL autologous whole blood

Platelet-poor plasma 
and buffy coat Erythrocytes

3600 rpm for 15 minutes

2400 rpm for 10 minutes

Platelet-poor plasma Platelet-rich plasma

Figure 5a: After the initial centrifugation, the erythrocytes collect at
the bottom of the tube.

Figure 5b: The supernatant is removed by means of a long cannula.
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eliminated with the allogeneic Tisseel system, whereas the
SmartPReP system is an autologous system and hence there
is no risk of disease transmission.18 In addition, the
SmartPReP system produces PRP gel as well as fibrin glue;
the PRP could be the more important product because of
its platelet-associated growth factors. Furthermore, the
SmartPReP system has larger blood containers for centrifu-
gation. This is important because it is advisable to obtain
90 to 180 mL of whole blood, as this amount of blood will
yield sufficient PRP for maxillofacial or plastic and recon-
structive surgical procedures.18

Two additional systems are now available commerc-
ially for office use by dental practitioners:33,35,96 the

Platelet Concentrate Collection System [PCCS]
(3i Implant Innovations, Palm Beach Gardens, Florida) and
the Curasan PRP kit (Curasan, Pharma Gmbh AG,
Lindigstrab, Germany). Published reports33,35,96 indicate
that these systems have greater ease of handling and shorter
preparation times than the SmartPReP and Tisseel systems.
The PCCS and Curasan systems use different protocols,
but the end product is suitable for the same oral surgical
applications.

In a comparison of the PCCS and Curasan systems,
whole blood was drawn from healthy donors, and PRP was
prepared with each system. Higher platelet counts were
achieved with the PCCS system.96 The concentrations of
TGF-b1 and IGF-I were significantly higher and that of
PDGF-AB was lower with the PCCS than with the Curasan
system. The authors concluded that the PCCS end product
had a higher platelet count and a higher total content of
growth factors.96 The same comparison was performed by
Appel and others.35 Whole blood was drawn from healthy
individuals and processed with the PCCS and Curasan
systems, as well as a procedure used in transfusion medi-
cine. The absolute gain in platelets was higher with the
PCCS system, but the highest concentration of platelets per
microlitre was obtained with the Curasan system. The
procedure used in transfusion medicine may offer an alter-
native if a commercial preoperative system is not available.
The authors recommended that future studies should assess
the ideal concentration of the various growth factors, char-
acterize other physiochemical factors that may be present in
the platelet concentrate and explain the beneficial effects of
PRP treatment in bone regeneration.35

Use of the colour-coded Curasan kit is described here to
demonstrate the ease of preparing a small amount of PRP
for use in reconstruction of periodontal and osseous defects,
augmentation of extraction sockets, and connective tissue
grafting procedures (Fig. 1 and Fig. 2).33

Figure 7: Platelet-rich plasma (in the syringe) and platelet-poor
plasma (in the centrifugation tube). The latter can be used to cover
the surgical area.

Figure 6: After the second centrifugation, the platelet-rich plasma is
removed by a long cannula.

Figure 8: Platelet-rich plasma is mixed with calcium chloride and
thrombin to start the clotting cascade, and this mixture is then
transferred into the defect.
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Recent publications have indicated that PRP prepared
from 8 to 10 mL of whole blood is sufficient for periodon-
tal regenerative therapies.8,16,25 However, in oral and
maxillofacial reconstruction, 8 to 500 mL of whole blood
should be drawn, so as to obtain the greater amounts of
PRP needed for larger surgical defects.13,18,29

The blood sample is drawn into a citrated tube (Fig. 3).
If more than 8 mL is needed (e.g., for larger defects), more
than one tube of blood should be drawn. The sample tube
is then spun in a standard centrifuge for 10 minutes at
2400 rpm (Fig. 4) to produce PPP. The PPP is taken up
into a syringe with a long cannula and an additional 
air-intake cannula (Figs. 5a and 5b). A second centrifuga-
tion (15 minutes at 3600 rpm) is performed to concentrate
the platelets. The second supernatant is also taken up by a
long cannula and an air-intake cannula (Fig. 6). For each
8 mL of blood, the volume of supernatant is about 
0.6–0.7 mL (Fig. 7); this is the PRP, to be used for the
surgical procedure (Fig. 8). At the time of the application,
the PRP is combined with an equal volume of a sterile
saline solution containing 10% calcium chloride (a 
citrate inhibitor that allows the plasma to coagulate) and
100 U/mL of sterile bovine thrombin (an activator that
allows polymerization of the fibrin into an insoluble gel,
which causes the platelets to degranulate and release the
indicated mediators and cytokines); the result should be a
sticky gel that will be relatively easy to apply to the surgical
defects.8,16,18 The PPP can be stored for use as a protective
barrier over the wound (Fig. 7).

Conclusions
PRP is a new application of tissue engineering and a

developing area for clinicians and researchers. It is a storage
vehicle for growth factors, especially PDGF and TGF-b,
both of which influence bone regeneration. Although the
growth factors and the mechanisms involved are still poorly
understood, the ease of applying PRP in the dental clinic
and its beneficial outcomes, including reduction of bleed-
ing and rapid healing, hold promise for further procedures.
Most important, this autologous product eliminates
concerns about immunogenic reactions and disease trans-
mission. Animal studies and recently published human
trials have demonstrated successful results. More well-
designed and properly controlled studies are needed to
provide solid evidence of PRP’s capacity for and impact on
wound healing, soft-tissue reconstruction and (in combina-
tion with bone grafts) augmentation procedures, especially
in oral and periodontal therapy. C
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