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Concern has been expressed about the safety of formocresol use in pediatric dentistry.
Formaldehyde, a primary component in formocresol, is a hazardous substance and is con-
sidered a probable human carcinogen by Health Canada. However, humans inhale and
ingest formaldehyde daily and also produce this compound as part of normal cellular
metabolism. The human body is physiologically equipped to handle this exposure through
multiple pathways for oxidation of formaldehyde to formate and incorporation into bio-
logical macromolecules via tetrahydrofolate-dependent one-carbon biosynthetic path-
ways. Recent re-evaluation of earlier research that examined potential health risks
associated with formaldehyde exposure has shown that the research was based on flawed
assumptions, which resulted in erroneous conclusions. This review examines more recent
research about formaldehyde metabolism, pharmacokinetics and carcinogenicity, the
results of which indicate that formaldehyde is probably not a potent human carcinogen
under conditions of low exposure. Extrapolation of these research results to pediatric den-
tistry suggests an inconsequential risk of carcinogenesis associated with formaldehyde use
in pediatric pulp therapy. Areas for further investigation are suggested.

MeSH Key Words: carcinogens/toxicity; formaldehyde/chemistry; formocresols/toxicity; pulpotomy/
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The suggestion that formocresol use in
pediatric dentistry is unwarranted because
of safety concerns has been promoted

(unsuccessfully in North America) for several
decades. This has stimulated investigations of
alternatives to formocresol pulpotomy, some
of which have shown efficacy equivalent to
that of the latter procedure. Such research into
alternatives is not only welcome but also
absolutely necessary, as there can be no doubt
that a reparative, biological approach to pedi-
atric pulp therapy is preferable to the abso-
lutist, devitalization approach of formocresol
pulpotomy or primary tooth pulpectomy.
However, until that goal is achieved,
formocresol should continue to be used in
pediatric pulp therapy. This commentary will

demonstrate, through a thorough review of the
relevant literature, that formocresol is indeed
safe for children and that the “evidence” for
banning this medicament has been either mis-
interpreted or replaced by better science.

Formaldehyde Is Ubiquitous
Formaldehyde is found in the air we

breathe, the water we drink and the food 
we eat.1 Although daily intake from food is
difficult to evaluate, the World Health
Organization2 has estimated it at 1.5 to 14 mg/
day (mean 7.8 mg/day); Owen and others3

estimated daily formaldehyde intake from food
in a North American diet at 11 mg/day. Engine
exhaust from cars and trucks without catalytic
converters contains formaldehyde, and the
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compound is also found in or released from many house-
hold products such as antiseptics, dishwashing liquids,
fabric softeners, carpet cleaners, nail polish, nail hardener
and some dermatologic products, paper products, adhe-
sives, latex paints, plastics, some permanent press fabrics,
various wood products and tobacco products. In unpopu-
lated areas, outdoor air contains approximately 0.2 parts
per billion (ppb) formaldehyde, but in populated areas,
with truck and automobile traffic, air concentrations
range between 10 and 20 ppb. In 2002–2003 Health
Canada4 found levels of formaldehyde of 2 to 81 ppb in the
air inside several homes in Prince Edward Island and in
Ottawa. The National Institute for Occupational Safety
and Health5 in the United States has stated that formalde-
hyde is immediately dangerous to health and life at con-
centrations of 20 parts per million (ppm) and higher.
Second-hand cigarette smoke may contain up to 0.4 ppm
of formaldehyde.6

Daily formaldehyde exposure is, therefore, a fact of
life. Assuming a contribution of 9.4 mg/day from food,
1 mg/day from inhalation and 0.15 mg/day from water, an
adult takes in 10.55 mg of formaldehyde per day.1 Children
are exposed to a lesser amount because of lower food
intake, but at present there are no estimates of pediatric
exposure. The estimated dose of formaldehyde associated
with one pulpotomy procedure, assuming a 1:5 dilution of
formocresol placed on a number 4 cotton pellet that has
been squeezed dry, is 0.02 to 0.1 mg (author’s calculation).

Given the environmental ubiquitousness of formalde-
hyde and the recognized daily intake by humans, it is
highly unlikely that the elimination of the microgram
quantities of formaldehyde associated with formocresol
pulpotomy will have a significant impact on a child’s daily
exposure.

Pharmacokinetics of Formaldehyde
In addition to their inhalation and ingestion of

formaldehyde, humans produce formaldehyde as part of
normal cellular metabolism. For example, formaldehyde is
formed during amino acid metabolism, oxidative
demethylation, and purine and pyrimidine metabolism.7

Moreover, humans are well equipped physiologically to
handle this exposure through multiple pathways for 
conversion of formaldehyde and its oxidation product 
formate. The single carbon atom released during the
metabolism of formaldehyde and formate is deposited in
the “one carbon pool” which, in turn, is used for the
biosynthesis of purines, thymidine, and other amino acids
that are incorporated into RNA, DNA and proteins 
during macromolecular synthesis. Endogenous levels of
metabolically produced formaldehyde range from approx-
imately 3 to 12 ng/g tissue.8

Extensive study of the metabolic pathways of
formaldehyde has demonstrated that cytosolic alcohol
dehydrogenase, mitochondrial aldehyde dehydrogenase

and glutathione-dependent and glutathione-independent
dehydrogenases are important enzymes in the metabolism
of formaldehyde in hepatocytes,9 oral mucosa10 and nasal
respiratory mucosa.11 The principal oxidative product of
formaldehyde is formate, which is further oxidized to
carbon dioxide and water by the action of formyltetrahy-
drofolate synthetase.12 In alternative pathways, formate
may be converted to a soluble sodium salt and excreted in
the urine, or it may be incorporated into the one-carbon
pool for use in biosynthesis.13,14

Exogenous formaldehyde is taken up into the human
body via ingestion, inhalation and dermal exposure.
Ingested formaldehyde is readily absorbed by the gastroin-
testinal tract, and exhibits little subacute toxicity after oral
exposure.15 Inhaled formaldehyde appears to be readily
absorbed by the upper respiratory tract but is not distrib-
uted throughout the body because it is so rapidly metabo-
lized.16 Experiments in rats, monkeys and humans have
shown no significant differences in formaldehyde concen-
tration in the blood before and immediately after exposure
by inhalation. Using gas chromatography and mass spec-
trometry to measure blood formaldehyde concentrations
in Fischer 344 rats exposed to a very high formaldehyde
concentration (14.4 ppm for 2 hours) and in unexposed
controls, Heck and others16 showed that the blood con-
centrations of the 2 groups were virtually identical.
Casanova and others17 reported that the concentration of
formaldehyde in the blood of rhesus monkeys following
prolonged exposure to a high concentration of inhaled
formaldehyde (6 ppm for 6 hours/day, 5 days per week for
4 weeks) had no significant effect on the concentration of
formaldehyde in blood relative to pre-exposure levels.
Blood concentrations of formaldehyde were measured in 
6 human volunteers exposed for 40 minutes to 1.9 ppm
formaldehyde16 (a concentration that is considered slightly
irritating to the nasal and conjunctival membranes), but
the concentrations before exposure were not significantly
different from those measured immediately after expo-
sure. The average concentration of formaldehyde in the
blood of rats, monkeys and humans was 2.70 ± 0.15 µg/g
(mean ± standard error), or approximately 0.1 mmol/L.
In dermal studies, formaldehyde was absorbed less readily
by monkeys than by rats or guinea pigs.18

Following intravenous infusion, the biological half-life
of formaldehyde in monkey blood is about 1.5 minutes,
with a concurrent rise in formic acid levels19 indicating
metabolism of the formaldehyde. In rats, metabolism of
formaldehyde after administration via the pulp chamber is
also rapid, and the majority of conversion reportedly
occurs within 2 hours after administration.20 Exogenous
formaldehyde is cleared from human plasma with a bio-
logical half-life of 1 to 1.5 minutes.21 In dogs, the conver-
sion of formate to carbon dioxide and water results in a
biological half-life for formate of about 80 to 90 minutes.12
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In humans, the liver converts formaldehyde to carbon
dioxide at a rate of 22 mg/min.3,22,23

In mice and rats, the metabolites of formaldehyde are
eliminated in urine, feces and expired air, the relative pro-
portion depending on the route of administration.24,25

Higher urine concentrations of formic acid were found in 3 of
6 workers occupationally exposed to unspecified concen-
trations of formaldehyde in air (30.0, 50.5 and 173.0 mg/L,
respectively) than in unexposed workers (17 mg/L).26

Formaldehyde also reacts covalently with amino and
sulfhydryl groups in target tissues and with DNA, forming
unstable hydroxymethyl protein adducts (DNA–protein
cross-links [DPX]) and, in a second slower reaction
involving recruitment of a second amino group, methylene
cross-links.27,28 However, in rat and monkey tissues, metab-
olism of formaldehyde and its elimination by pathways
other than DPX formation overwhelmingly predominate.29

Results from dental pulp studies involving rats, dogs
and monkeys showed that formaldehyde labelled with
radioactive carbon (14C) was distributed among the
muscle, liver, kidney, heart, spleen and lungs, although the
quantities detected were very small (1% of the total
administered dose).20,30–32 Myers and others31 and Pashley
and others32 concluded that [14C]formaldehyde is
absorbed systemically from pulpotomy sites. However,
their studies were poorly controlled and did not determine
whether the labelling of tissues occurred by metabolic
incorporation of the [14C] moiety of the labelled
formaldehyde into macromolecules or by covalent binding
(formation of protein adducts). In an unrelated study,
Casanova-Schmitz and others33 sampled the venous blood
of rats after injecting either [14C]formaldehyde or
[14C]formate into the tail vein. They verified that labelling
of proteins and target tissues was due to metabolic incorpo-
ration of the radiolabelled metabolite of formaldehyde and
not covalent binding. The profiles of radioactivity in the
blood after these injections were similar regardless of
whether [14C]formaldehyde or [14C]formate was the source
of 14C. These results excluded the possibility that the
labelling of blood macromolecules was due to formation of
protein adducts by formaldehyde, since only [14C]formalde-
hyde is capable of forming protein adducts, whereas both
[14C]formaldehyde and [14C]formate are precursors for
macromolecular synthesis by the one-carbon pool.

Mutagenicity, Genotoxicity and Cytotoxicity
Exposure of cells to formaldehyde leads to the forma-

tion of DPX.34 The most common types of DNA damage
induced by formaldehyde are clastogenic lesions, including
sister chromatid exchanges (SCE), micronuclei and chro-
mosomal aberrations,35 and deletions.36 Levels of
formaldehyde-induced DPX are considered to represent a
good molecular dosimeter of formaldehyde exposure at
sites of contact and are frequently used for risk modelling
and prediction of formaldehyde carcinogenicity for dif-

ferent species.37–39 DPX have been shown to occur only at
the site of initial contact in the nasal mucosa of rats and in
the upper respiratory tract of monkeys exposed to
formaldehyde.38,39

It has also been proposed that formaldehyde could
induce the development of DPX at distant sites but no
convincing evidence has been obtained from in vivo
experimental studies. The outcomes of these studies have
included (1) lack of detectable protein adducts or DPX in
the bone marrow of normal rats exposed to formaldehyde
labelled with radioactive hydrogen (3H) or carbon (14C) at
concentrations as high as 15 ppm,33 (2) lack of detectable
protein adducts or DPX in the bone marrow of glu-
tathione-depleted (metabolically inhibited) rats exposed
to [3H]formaldehyde and [14C]formaldehyde at concen-
trations as high as 10 ppm,21,40 (3) lack of detectable DPX
in the bone marrow of rhesus monkeys exposed to
[14C]formaldehyde at concentrations as high as 6 ppm,39

and (4) failure of formaldehyde to induce chromosomal
aberrations in the bone marrow of rats exposed to air-
borne concentrations as high as 15 ppm34 or of mice
receiving intraperitoneal injections of formaldehyde at
doses as high as 25 mg/kg.41

In a recent issue of this journal, Casas and others42

cited 2 studies as evidence of the genotoxic and mutagenic
effects of formaldehyde.43,44 However, those published
articles in fact represent the same study, the first article
reporting interim results of nasal tumour development in
rodents43 and the second (3 years later)44 reporting the
final results for the same study. Although Kerns and
others44 discussed the mutagenic potential of formalde-
hyde in their animal model, they did not in fact report
results pertaining to mutagenicity, as was stated by Casas
and others.42 More recent research by Heck and
Casanova45 has revealed that the development of DPX in
nasal tissues of rat and upper respiratory tract of primates
are associated only with exposure to high doses of
formaldehyde; at ambient concentrations consistent with
environmental exposures, DPX are unlikely to occur.
Furthermore, Quievryn and Zhitkovitch46 have shown that
DPX do not persist in tissues for more than a few hours
and undergo either spontaneous hydrolysis or active repair
by proteolytic degradation of cross-linked proteins,
thereby calling into question the role of DPX in formalde-
hyde-induced carcinogenesis.

Cytogenetic studies47 of lymphocytes from rodents fol-
lowing formaldehyde inhalation with exposures ranging
from 0.5 to 15 ppm for 6 hours per day for 5 days failed to
detect either chromosomal aberrations or sister chromatid
exchanges at any of the formaldehyde concentrations. The
authors attributed their negative results to the pharmaco-
kinetics of formaldehyde.

In vitro experiments with a Chinese hamster cell line36

found that DPX and SCE as a result of formaldehyde 
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exposure were associated with cytotoxicity, not muta-
tion.48 In addition, no mutagenesis occurred in cultured
human lymphocytes below a formaldehyde threshold of
5 µg/mL in the culture medium.49

Dental studies have not supported the contention that
formaldehyde, as used in dentistry, is mutagenic. Zarzar
and others50 performed formocresol pulpotomy on 20
children using Buckley’s original formula (19% formalde-
hyde and 35% cresol in a solution of 15% glycerin and
water). Peripheral venous samples were collected from
each child immediately before and 24 hours after the
pulpotomy, and lymphocytes were collected from each
blood sample for cell culture and cytogenetic analysis.
No statistically significant differences were found between
the 2 groups in terms of chromosomal aberrations,
chromatid breaks or chromatid gaps, and Zarzar and
others50 concluded that formocresol is not mutagenic. The
authors did observe chromosomal aberrations in 1 (5%)
of the 20 patients but were unable to determine whether
formocresol or other variables accounted for this finding.

Ribeiro and others51,52 reported 2 studies that assessed the
mutagenic potential of formocresol as well as several other
chemicals commonly used in dentistry. Using a mouse lym-
phoma cell line and cultured human fibroblasts and a series
of dilutions of formocresol similar to clinical doses, these
authors found that formocresol did not produce detectable
DNA damage and should not be considered genotoxic.

Laboratory investigations of root canal sealers con-
taining formaldehyde, which are used in endodontic 
procedures, have demonstrated cytotoxicity.53 However, for
several reasons, these investigations are not comparable to
formocresol pulp studies. A larger quantity of formaldehyde
is released from root canal sealers than during pediatric
formocresol pulpotomy because of the large quantity of
sealer used. Moreover, contact of formocresol with vital
pulp tissue during pulpotomy is restricted to only a few
minutes, whereas root canal sealer remains in the root canal
and forms part of the final restoration, with the potential
for further release of formaldehyde.

In summary, the development of DPX has been
demonstrated only after prolonged exposure to formalde-
hyde at specific contact sites such as the nasopharynx.
Hence, the argument that the microgram quantities of
formaldehyde applied to pediatric pulp tissue for a few
minutes will induce distant-site genotoxicity is not sup-
ported by the available evidence.

Carcinogenicity
That cancer develops in experimental animals after

inhalation of air with high concentrations of formalde-
hyde is indisputable. These cancers occur as a result of
long-term, direct contact between the formaldehyde and
susceptible tissues. The resultant toxic effects at these ini-
tial contact sites include ulceration, hyperplasia and squa-
mous metaplasia and “are considered to contribute to the

subsequent development of cancer.”54 However, these
high-dose responses are unlikely to occur at sites distant
from the point of initial formaldehyde contact (such as the
bone marrow) because, according to a large body of undis-
puted evidence, formaldehyde is not delivered to these dis-
tant sites. Those who have argued against the continued
use of formocresol in pediatric dentistry on the basis that
“formaldehyde causes cancer” have failed to recognize this
very important distinction.

Casas and others42 cited the work of Swenberg and
others43 and Kerns and others44 to support their argument
about carcinogenicity. In fact, the 2 studies led by Swenberg
and Kerns are the same study, with Swenberg and others
reporting interim results after 18 months and Kerns and
others reporting final results after 30 months. This group of
researchers showed that nasal squamous cell carcinoma
developed in Fischer 344 rats exposed to formaldehyde gas
at concentrations of 6 ppm and higher for 6 hours/day,
5 days per week for 24 months. However, the formaldehyde
concentrations that resulted in cancer were more than 
1,000 times typical human environmental exposures and 
8 times the U.S. occupational exposure limit (0.75 ppm)55

and are therefore not representative of human experience.
Moreover, the experimental conditions that resulted in
nasal cancers in rodents in no way resemble the conditions
associated with a 5-minute exposure to microgram quanti-
ties of formaldehyde, as experienced by a child undergoing
formocresol pulpotomy.

Until recently, formaldehyde was classified as a “prob-
able human carcinogen” by Health Canada,56,57 the
International Agency for Research on Cancer (IARC),58,59

the Agency for Toxic Substances and Disease Registry
(ATSDR)60 in the U.S. Department of Health and Human
Services, and the U.S. Environmental Protection Agency
(USEPA).61 Although they lacked sufficient evidence to
demonstrate the development of cancer in exposed
humans, these regulators (Health Canada, ATSDR and
USEPA) and advisory agency (IARC) predicted the cancer
risk posed by low-dose exposure by extrapolating from the
laboratory animal data cited previously.

However, various researchers have recognized that 
significant anatomic and physiologic differences between
humans and other animal models confounded extra-
polation of animal data to humans.28,62–64 Researchers at
the Chemical Industry Institute for Toxicology Centers 
for Health Research (CIIT)63,64 developed dynamic
3-dimensional airflow models that accurately depicted
both airflow and regional deposition of formaldehyde on
mucosal surfaces of rodents, monkeys and humans. The
improved understanding garnered from this research
allowed the researchers to improve the accuracy of com-
puter-generated predictions of the uptake and absorption
of formaldehyde in each animal model. The CIIT
researchers also developed a biologically motivated 



JCDA • www.cda-adc.ca/jcda • April 2006, Vol. 72, No. 3 • 248c

––– Formocresol –––

computational model, based on combined rodent and pri-
mate data from the computer-generated nasal cavity air-
flow models, cell proliferation data and DPX data, which
allowed them to mathematically evaluate the cancer risks
associated with inhalation of formaldehyde.64 Finally, with
input from the USEPA, Health Canada and peer reviewers,
the CIIT researchers published a thorough evaluation of
potential cancer risk from formaldehyde, integrating toxi-
cologic, mechanistic and dosimetric data.48 These new
experimental data, derived from sophisticated mathemat-
ical models, replaced the inaccurate default assumptions
that had been used by the regulatory authorities.

On the basis of these investigations,48,64 CIIT suggested
that cancer risk is negligible until formaldehyde exposure
reaches the levels associated with cytotoxicity (in the range
of 600 to 1,000 ppb). The resulting estimates of cancer risk
are many orders of magnitude lower that the 1987 and
1991 USEPA estimates.48,64 The model developed by CIIT
overcomes problems associated with the standard risk-
assessment methods cited by the USEPA and the IARC.

An IARC press release of June 15, 2004,59 reclassified
formaldehyde from a “probable” to a “known” human car-
cinogen and has been cited as evidence that formaldehyde
should be eliminated from pediatric dentistry.42 However,
some clarification of the press release is required, lest
readers be left with the impression that the IARC classifi-
cation is definitive and binding. The IARC classification is
not an assessment of risk, but merely an attempt to answer
the question of whether, under any circumstances, a sub-
stance could produce cancer in humans. Clearly, for
formaldehyde the answer to this question is yes. The IARC
classification thus serves as a hazard identification, the
first step in a multilevel risk assessment process. More
importantly, the IARC reclassification was based primarily
on the results of a single National Cancer Institute (NCI)
study37 among workers in formaldehyde industries. That
study included many workers at several plants, but only a
small number of people working at a single plant were
found to have a rare form of cancer. Clearly, confounding
variables may have affected the results. Recognizing these
uncertainties, the NCI has agreed to update the study. That
research is now in progress.

Health Canada has stated that it considers the CIIT
dose–response model64 “to provide the most defensible
estimates of cancer risk, on the basis that it encompasses
more of the available biological data thereby offering con-
siderable improvement over default.”65 The Organization
for Economic Cooperation and Development has stated,
on the basis of the CIIT research models, that “taking into
account the extensive information on its mode of action,
formaldehyde is not likely to be a potent carcinogen to
humans under low exposure conditions.”66 Pediatric pulp
therapy using formocresol as recommended would be
considered a “low exposure condition.” The USEPA Office
of Air Quality Planning and Standards has stated,

“The dose response value in the EPA Integrated Risk
Information System (IRIS) [for formaldehyde] is based on
a 1987 study and no longer represents the best available
science in the peer reviewed literature. We believe that 
the CIIT modeling effort represents the best available
application of mechanistic and dosimetric science on 
the dose-response for portal of entry cancers due to
formaldehyde exposure.”67

The possibility that inhaled or ingested formaldehyde
may induce cancers at sites distant from the respiratory or
gastrointestinal tracts has been investigated in numerous
long-term toxicity studies performed in rodents.54

Leukemia was not observed in any of 7 long-term inhala-
tion bioassays in rodents nor was it observed in 3 drinking
water studies in which rodents were exposed to doses as
high as 1.9 to 5 g/L. Leukemia was observed in a single
drinking water study68 in which Wistar rats were exposed
to doses as high as 1.5g/L, but that study is regarded by the
Cancer Assessment Committee of the Food and Drug
Administration in the United States69 as questionable and
the data unreliable because of a lack of critical detail and
questionable histopathological conclusions.

Evidence from epidemiology investigations of indus-
trial workers with exposure to formaldehyde provide weak
and inconsistent evidence that such exposure is associated
with leukemia. Importantly, the researchers in each
instance failed to use recognized epidemiologic criteria to
evaluate the hypothesis that formaldehyde exposure leads
to cancer. The results of 2 large American studies, one
from the NCI37 and the other from the National Institute
of Occupational Safety and Health,70 did not support a
strong causal relation between formaldehyde exposure 
and leukemia, and the strength of association — the extent
to which a collective body of data indicates a positive 
association between a disease, in this case leukemia, and a
suspected causative agent, in this case formaldehyde —
was weak (standardized mortality ratio of 0.86). Moreover,
a study of British chemical workers, sponsored by the
Medical Research Council Environmental Epidemiology
Unit in the United Kingdom71 and involving the highest
chronic formaldehyde exposures and highest peak expo-
sures of all 3 investigations, showed no causal relationship
between formaldehyde and leukemia.

Therefore, evidence from both experimental investiga-
tions and epidemiologic research do not support the
hypothesis that inhaled or ingested formaldehyde may
induce distant-site toxicity. The abundant negative evi-
dence mentioned previously is undisputed and strongly
suggests that there is no delivery of inhaled, ingested or
topically applied formaldehyde to distant sites. Combined
with the facts that formaldehyde occurs naturally
throughout the body, that there are multiple pathways for
detoxification and that only microgram quantities of
formaldehyde are applied to pulp tissues during pulpo-
tomy procedures for mere minutes, the negative findings
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provide convincing evidence that exposure of children to
the formaldehyde component of formocresol during a
pulpotomy is insignificant and inconsequential.

Immune Sensitization
Despite evidence from dogs that formocresol can pro-

duce antigenic activity in dental pulp tissue72, Rolling and
Thulin73 found no increase in either immune response or
allergic reactions in 128 children who had undergone
formocresol pulpotomy.

More recent evidence supports the work of Rolling and
Thulin. A Canadian study74 of urea formaldehyde foam
insulation (UFFI) off products in the homes of subjects
with asthma found that long-term exposure had no effect
on immunologic parameters. Doi and others75 found that
the prevalence of IgE sensitization to formaldehyde was
very low among Japanese children, regardless of whether
they had asthma; furthermore, they found no clinical 
relevance of formaldehyde-specific IgE. Hence, the 
suggestion that formocresol “sensitizes” children has not
been supported.

Where Do We Go from Here?
On the basis of the evidence presented in this review, it

is highly unlikely that formocresol, judiciously used, is
genotoxic or immunotoxic or poses a cancer risk to 
children who undergo one or more formocresol pulpo-
tomy procedures. However, definitive data to support this
hypothesis are lacking, and such evidence is needed before
definitive conclusions can be reached.

In keeping with accepted therapeutic principles, pedi-
atric dentists who wish to continue to use formocresol
should apply the lowest dose possible for the shortest time
possible to obtain the desired effect. To that end, a 1-in-5
dilution of Buckley’s formocresol is recommended. The
dilution should be performed in the local pharmacy to
ensure accuracy. Recent research76 has indicated that a
minority of pediatric dentists use dilute formocresol
because it is not available commercially, so perhaps it is
time for the manufacturers of formocresol products to
develop and market a 1-in-5 dilution of this medicament
to replace the “full-strength” formulations now available,
especially given that the effects of the 2 formulations are
equivalent.76

The author has calculated that a number 4 cotton
pellet soaked in full-strength formocresol and then
squeezed dry could theoretically deliver a dose of 0.1 to 
0.5 mg formocresol to the dental pulp. A number 4 pellet
soaked in a 1-in-5 dilution of formocresol, squeezed dry
and applied for 5 minutes or less could deliver 0.02 to 
0.1 mg. However, the actual dose delivered to the pulp
tissue is probably much smaller in both cases, as most of
the formocresol will remain in the cotton pellet.
Determining the actual dose delivered represents an
important area for further investigation. In addition,

efforts are needed to disseminate information about dose
delivered.

It is important to put this discussion into a broader
perspective. Antibiotics are used in dentistry at least as
often as formocresol, and each year numerous children
and adults are injured or die as a result of allergic or ana-
phylactic reactions to antibiotics,77 yet there has been no
call for the elimination of antibiotics from dental practice.
In fact, there is an acceptance that an allergic reaction is
both a possibility and a risk in the treatment of dental
infection. Peroxides for dental bleaching, bonding agents
and solvents used in adhesive dentistry and mercury
released from amalgam are other examples of potentially
dangerous chemicals that are used in pediatric dentistry
without warnings to parents and patients of the associated
risks. Singling out one chemical such as formocresol for
elimination from practice protocols in the face of a com-
plete lack of human experimental data identifying a clear
risk is intellectual tomfoolery.

On the basis of the evidence presented in this review,
the risk of cancer, mutagenesis or immune sensitization
associated with the proper use of formocresol in pediatric
pulp therapy can be considered inconsequential. Until a
superior alternative is developed or there is definitive evi-
dence substantiating a cancer risk, there is no reason to
discontinue its use. When used judiciously, formocresol is
a safe medicament. C
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